Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists target microorganisms to break down toxic pesticide

17.01.2003


Using biological means to detoxify large, contaminated sites is receiving high praise as an alternative to incineration or landfill methods



A pesticide used extensively all over the world is receiving attention these days more for methods being used to clean it up than for its use as chemical to control insects and mites.

Endosulfan, classified as an organochlorine (the same family as DDT), is registered for use as a pesticide on 60 U.S. crops. Its residues have been found in the atmosphere, soils, sediments, surface and ground waters, and food. It is one of the most commonly detected pesticides in U.S. water (38 states) and is rated by the Environmental Protection Agency as a Category 1 pesticide with extremely high acute toxicity. Endosulfan affects the central nervous system, kidney, liver, blood chemistry and parathyroid gland and has reproductive, teratogenic and mutagenic effects.


Total average annual use of endosulfan is estimated at approximately 1.38 million pounds of the active ingredient. Endosulfan and its breakdown products are persistent in the environment with an estimated half-life of 9 months to 6 years. Because it is a persistent organic pollutant (POP) that enters the air, water, and soil during its use and manufacture, scientists have been researching ways to safely and effectively breakdown this neurotoxin.

Researchers from the University of California-Riverside and the University of Agriculture, Faisalabad, Pakistan, recently identified specific microorganisms which can breakdown the toxicity of endosulfan. Detoxifying pesticides through biological means is receiving serious attention as an alternative to existing methods, such as incineration and landfill, which are not sufficient for large, contaminated sites. By identifying microorganisms to specifically degrade endosulfan, these researchers were able to drastically reduce the toxic residues in the soil. The results of this study are published in the January-February issue of the Journal of Environmental Quality.

Various environmental samples were collected from different polluted sites to identify and isolate microorganisms for their ability to breakdown endosulfan. Out of 10 microorganisms isolated and screened, two proved successful in degrading endosulfan: Fusarium and Pandoraea spp.

Project leader William T. Frankenberger, University of California-Riverside, states, “Pollutants can be degraded by microorganisms when they use the toxin as a carbon and energy source. We have been successful in isolating two strains that have immense potential for endosulfan degradation.”

The results of this work suggest these novel strains are a valuable source of endosulfan-degrading enzymes and may be used for the detoxification of endosulfan in contaminated soils, wastedumps, water bodies, industrial effluents and unused or expired stockpiles of the pesticide.


The Journal of Environmental Quality, http://jeq.scijournals.org is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) www.agronomy.org, the Crop Science Society of America (CSSA) www.crops.org and the Soil Science Society of America (SSSA) www.soils.org are educational organizations helping their 10,000+ members advance the disciplines and practices of agronomy, crop, and soil sciences by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.


Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org/

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>