Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists target microorganisms to break down toxic pesticide

17.01.2003


Using biological means to detoxify large, contaminated sites is receiving high praise as an alternative to incineration or landfill methods



A pesticide used extensively all over the world is receiving attention these days more for methods being used to clean it up than for its use as chemical to control insects and mites.

Endosulfan, classified as an organochlorine (the same family as DDT), is registered for use as a pesticide on 60 U.S. crops. Its residues have been found in the atmosphere, soils, sediments, surface and ground waters, and food. It is one of the most commonly detected pesticides in U.S. water (38 states) and is rated by the Environmental Protection Agency as a Category 1 pesticide with extremely high acute toxicity. Endosulfan affects the central nervous system, kidney, liver, blood chemistry and parathyroid gland and has reproductive, teratogenic and mutagenic effects.


Total average annual use of endosulfan is estimated at approximately 1.38 million pounds of the active ingredient. Endosulfan and its breakdown products are persistent in the environment with an estimated half-life of 9 months to 6 years. Because it is a persistent organic pollutant (POP) that enters the air, water, and soil during its use and manufacture, scientists have been researching ways to safely and effectively breakdown this neurotoxin.

Researchers from the University of California-Riverside and the University of Agriculture, Faisalabad, Pakistan, recently identified specific microorganisms which can breakdown the toxicity of endosulfan. Detoxifying pesticides through biological means is receiving serious attention as an alternative to existing methods, such as incineration and landfill, which are not sufficient for large, contaminated sites. By identifying microorganisms to specifically degrade endosulfan, these researchers were able to drastically reduce the toxic residues in the soil. The results of this study are published in the January-February issue of the Journal of Environmental Quality.

Various environmental samples were collected from different polluted sites to identify and isolate microorganisms for their ability to breakdown endosulfan. Out of 10 microorganisms isolated and screened, two proved successful in degrading endosulfan: Fusarium and Pandoraea spp.

Project leader William T. Frankenberger, University of California-Riverside, states, “Pollutants can be degraded by microorganisms when they use the toxin as a carbon and energy source. We have been successful in isolating two strains that have immense potential for endosulfan degradation.”

The results of this work suggest these novel strains are a valuable source of endosulfan-degrading enzymes and may be used for the detoxification of endosulfan in contaminated soils, wastedumps, water bodies, industrial effluents and unused or expired stockpiles of the pesticide.


The Journal of Environmental Quality, http://jeq.scijournals.org is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) www.agronomy.org, the Crop Science Society of America (CSSA) www.crops.org and the Soil Science Society of America (SSSA) www.soils.org are educational organizations helping their 10,000+ members advance the disciplines and practices of agronomy, crop, and soil sciences by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.


Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org/

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>