Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists target microorganisms to break down toxic pesticide

17.01.2003


Using biological means to detoxify large, contaminated sites is receiving high praise as an alternative to incineration or landfill methods



A pesticide used extensively all over the world is receiving attention these days more for methods being used to clean it up than for its use as chemical to control insects and mites.

Endosulfan, classified as an organochlorine (the same family as DDT), is registered for use as a pesticide on 60 U.S. crops. Its residues have been found in the atmosphere, soils, sediments, surface and ground waters, and food. It is one of the most commonly detected pesticides in U.S. water (38 states) and is rated by the Environmental Protection Agency as a Category 1 pesticide with extremely high acute toxicity. Endosulfan affects the central nervous system, kidney, liver, blood chemistry and parathyroid gland and has reproductive, teratogenic and mutagenic effects.


Total average annual use of endosulfan is estimated at approximately 1.38 million pounds of the active ingredient. Endosulfan and its breakdown products are persistent in the environment with an estimated half-life of 9 months to 6 years. Because it is a persistent organic pollutant (POP) that enters the air, water, and soil during its use and manufacture, scientists have been researching ways to safely and effectively breakdown this neurotoxin.

Researchers from the University of California-Riverside and the University of Agriculture, Faisalabad, Pakistan, recently identified specific microorganisms which can breakdown the toxicity of endosulfan. Detoxifying pesticides through biological means is receiving serious attention as an alternative to existing methods, such as incineration and landfill, which are not sufficient for large, contaminated sites. By identifying microorganisms to specifically degrade endosulfan, these researchers were able to drastically reduce the toxic residues in the soil. The results of this study are published in the January-February issue of the Journal of Environmental Quality.

Various environmental samples were collected from different polluted sites to identify and isolate microorganisms for their ability to breakdown endosulfan. Out of 10 microorganisms isolated and screened, two proved successful in degrading endosulfan: Fusarium and Pandoraea spp.

Project leader William T. Frankenberger, University of California-Riverside, states, “Pollutants can be degraded by microorganisms when they use the toxin as a carbon and energy source. We have been successful in isolating two strains that have immense potential for endosulfan degradation.”

The results of this work suggest these novel strains are a valuable source of endosulfan-degrading enzymes and may be used for the detoxification of endosulfan in contaminated soils, wastedumps, water bodies, industrial effluents and unused or expired stockpiles of the pesticide.


The Journal of Environmental Quality, http://jeq.scijournals.org is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) www.agronomy.org, the Crop Science Society of America (CSSA) www.crops.org and the Soil Science Society of America (SSSA) www.soils.org are educational organizations helping their 10,000+ members advance the disciplines and practices of agronomy, crop, and soil sciences by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.


Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org/

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>