Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wetlands clean selenium from agricultural runoff

03.01.2003


Researchers from the University of California have found a natural detox program for selenium-contaminated farm runoff in the form of wetland vegetation and microbes.



Results from a two-year study by UC Berkeley researchers show that man-made wetlands in the state’s San Joaquin Valley were able to remove an average of 69.2 percent of the selenium in agricultural drainage water. More significantly, some plant populations showed remarkable promise at converting selenium into a harmless gas consisting primarily of dimethyl selenide. That means less of the selenium would end up in sediment or plant tissue.

The new study, published online Wednesday, Jan. 1, in the journal Environmental Science and Technology, follows previous research at the Chevron oil refinery in Richmond, Calif. The researchers found that wetland ponds built in Richmond could take out as much as 89 percent of the selenium from millions of gallons a day of refinery discharge, preventing it from reaching San Francisco Bay.


"We thought that if wetlands could filter selenium from oil refinery wastewater, then they could probably be used for agricultural runoff," said Norman Terry, professor of plant biology at UC Berkeley’s College of Natural Resources and principal investigator of the study. "We’re basically learning that some of the best, most efficient filters for pollutants can be found in nature."

Terry said the entire wetland ecosystem is acting as a bio-geo-chemical filter. "Everything is working in concert to take the selenium out of the drainage water," said Terry. "The extensive root system of the plants slows down the water flow so the selenium gets trapped in the sediment. The plants also provide a source of fixed carbon to fuel microbes, which metabolize the selenium into non-toxic gas. It is truly an amazing process."

The UC Berkeley research is part of a larger project funded by the UC Salinity/Drainage Program. The program involves researchers from the UC campuses at Berkeley, Davis and Riverside, and from the Tulare Lake Drainage District in Corcoran, Calif., who have been studying ways to provide irrigation for Central Valley farmers while mitigating ecological risks.

The toxic effects of selenium made headlines in 1983 when high levels from polluted farm water were found at the Kesterson national wildlife refuge in the San Joaquin Valley, part of the Central Valley. The soil on the west side of the San Joaquin Valley is naturally rich in selenium, which leaches into the shallow groundwater of the region. Excessive agricultural irrigation accelerates this leaching process.

A large quantity of selenium-polluted agricultural drainage water was being discharged into the reservoir in the early 1980s. The selenium was linked to severe deformities suffered by birds and other wildlife at the Kesterson refuge.

"Kesterson lacked proper environmental monitoring and management, so the selenium continued to build up, becoming concentrated over time through the food chain," said Zhi-Qing Lin, lead author of the study and former post-graduate researcher with Terry at UC Berkeley.

The discovery of selenium in the reservoir put the brakes on the construction of a drain that would have carried irrigation water from the Central Valley to the Delta. Farmers say the disruption of the irrigation drain, however, allowed salt to build up in the soil, leaving their land fallow.

The situation was bad enough that, last month, the federal government agreed to pay $107 million to San Joaquin Valley farmers for 34,000 acres of salt-poisoned farmland.

To test the effectiveness of wetlands in cleaning selenium out of agricultural drainage water, researchers from the UC Salinity/Drainage Program built 10 separate wetland ponds in the Central Valley at a site in Corcoran. The ponds, or "cells," contain a single plant species - such as cordgrass, saltmarsh bulrush and rabbitfoot grass - or a combination of plants. One pond was left unplanted as a control. Separate pipes brought water in and out of the ponds, which are roughly the size of two basketball courts.

In measurements taken from 1997 to 1999, they found that most of the selenium was retained in the sediment, and less than 5 percent accumulated in plant tissue.

"Selenium is not considered an essential nutrient in plants," said Lin, who is now assistant professor of environmental ecology at Southern Illinois University at Edwardsville. "However, selenium is a chemical analogue to sulfur, which is essential to plants. One theory holds that plants metabolize selenium through similar bio-chemical pathways as sulfur."

The researchers say constructed wetlands can be retired and drained when the concentration of selenium in the sediment and plant tissue gets too high. This would allow another process of selenium removal to kick into gear.

"Once the water and wetland plants are removed, we can plant pickleweed or other vegetation into the soil," said Lin. "In lab tests, these plants and various strains of bacteria associated with them take over the remediation process and volatilize the selenium in the soil."

The researchers were particularly excited by the amount of selenium volatilized by the wetland ponds. In one summer month, nearly half of the selenium entering the pond containing rabbitfoot grass was volatilized into a gas mostly consisting of dimethyl selenide.

"Grasses that have extensive root systems, such as rabbitfoot grass and cordgrass, do a better job of providing surface area for microbes that help volatilize selenium into dimethyl selenide," said Terry.

Prior studies have found dimethyl selenide to be about 500 times less toxic than the inorganic forms of selenium.

"Converting the selenium into gas helps get the chemical out of the area entirely rather than having it build up in sediment or plant tissue," said Terry. "Air currents carry away the dimethyl selenide to the eastern part of the state where the soil is so deficient in selenium that farmers there actually feed their livestock selenium supplements to keep them healthy."

Terry noted that the air in the northern hemisphere already contains about 10,000 metric tons of volatile selenium from volcanoes, soil and plants. "The amount of dimethyl selenide released by wetlands would be negligible in comparison," he said.

The researchers are studying ways - including using genetically engineered plants - to improve volatilization rates throughout the year. Currently, volatilization is greatest during warmer months. When winter and fall periods were taken into account, an average of 9.4 percent of the total selenium entering the rabbitfoot grass pond was volatilized.

Terry said wetland plants could become a major wastewater remediation tool for both agriculture and industry.

"The upshot is that wetlands are a very efficient and affordable solution to ridding polluted water of a toxic chemical," said Terry. "Plants grow year after year, and while a constructed wetland system would need to be monitored, it would be relatively easy to maintain."

The Electric Power Research Institute helped support the UC Berkeley study.


Sarah Yang | EurekAlert!
Further information:
http://www.berkeley.edu/news/media/releases/2003/01/02_filter.html

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>