Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wetlands clean selenium from agricultural runoff

03.01.2003


Researchers from the University of California have found a natural detox program for selenium-contaminated farm runoff in the form of wetland vegetation and microbes.



Results from a two-year study by UC Berkeley researchers show that man-made wetlands in the state’s San Joaquin Valley were able to remove an average of 69.2 percent of the selenium in agricultural drainage water. More significantly, some plant populations showed remarkable promise at converting selenium into a harmless gas consisting primarily of dimethyl selenide. That means less of the selenium would end up in sediment or plant tissue.

The new study, published online Wednesday, Jan. 1, in the journal Environmental Science and Technology, follows previous research at the Chevron oil refinery in Richmond, Calif. The researchers found that wetland ponds built in Richmond could take out as much as 89 percent of the selenium from millions of gallons a day of refinery discharge, preventing it from reaching San Francisco Bay.


"We thought that if wetlands could filter selenium from oil refinery wastewater, then they could probably be used for agricultural runoff," said Norman Terry, professor of plant biology at UC Berkeley’s College of Natural Resources and principal investigator of the study. "We’re basically learning that some of the best, most efficient filters for pollutants can be found in nature."

Terry said the entire wetland ecosystem is acting as a bio-geo-chemical filter. "Everything is working in concert to take the selenium out of the drainage water," said Terry. "The extensive root system of the plants slows down the water flow so the selenium gets trapped in the sediment. The plants also provide a source of fixed carbon to fuel microbes, which metabolize the selenium into non-toxic gas. It is truly an amazing process."

The UC Berkeley research is part of a larger project funded by the UC Salinity/Drainage Program. The program involves researchers from the UC campuses at Berkeley, Davis and Riverside, and from the Tulare Lake Drainage District in Corcoran, Calif., who have been studying ways to provide irrigation for Central Valley farmers while mitigating ecological risks.

The toxic effects of selenium made headlines in 1983 when high levels from polluted farm water were found at the Kesterson national wildlife refuge in the San Joaquin Valley, part of the Central Valley. The soil on the west side of the San Joaquin Valley is naturally rich in selenium, which leaches into the shallow groundwater of the region. Excessive agricultural irrigation accelerates this leaching process.

A large quantity of selenium-polluted agricultural drainage water was being discharged into the reservoir in the early 1980s. The selenium was linked to severe deformities suffered by birds and other wildlife at the Kesterson refuge.

"Kesterson lacked proper environmental monitoring and management, so the selenium continued to build up, becoming concentrated over time through the food chain," said Zhi-Qing Lin, lead author of the study and former post-graduate researcher with Terry at UC Berkeley.

The discovery of selenium in the reservoir put the brakes on the construction of a drain that would have carried irrigation water from the Central Valley to the Delta. Farmers say the disruption of the irrigation drain, however, allowed salt to build up in the soil, leaving their land fallow.

The situation was bad enough that, last month, the federal government agreed to pay $107 million to San Joaquin Valley farmers for 34,000 acres of salt-poisoned farmland.

To test the effectiveness of wetlands in cleaning selenium out of agricultural drainage water, researchers from the UC Salinity/Drainage Program built 10 separate wetland ponds in the Central Valley at a site in Corcoran. The ponds, or "cells," contain a single plant species - such as cordgrass, saltmarsh bulrush and rabbitfoot grass - or a combination of plants. One pond was left unplanted as a control. Separate pipes brought water in and out of the ponds, which are roughly the size of two basketball courts.

In measurements taken from 1997 to 1999, they found that most of the selenium was retained in the sediment, and less than 5 percent accumulated in plant tissue.

"Selenium is not considered an essential nutrient in plants," said Lin, who is now assistant professor of environmental ecology at Southern Illinois University at Edwardsville. "However, selenium is a chemical analogue to sulfur, which is essential to plants. One theory holds that plants metabolize selenium through similar bio-chemical pathways as sulfur."

The researchers say constructed wetlands can be retired and drained when the concentration of selenium in the sediment and plant tissue gets too high. This would allow another process of selenium removal to kick into gear.

"Once the water and wetland plants are removed, we can plant pickleweed or other vegetation into the soil," said Lin. "In lab tests, these plants and various strains of bacteria associated with them take over the remediation process and volatilize the selenium in the soil."

The researchers were particularly excited by the amount of selenium volatilized by the wetland ponds. In one summer month, nearly half of the selenium entering the pond containing rabbitfoot grass was volatilized into a gas mostly consisting of dimethyl selenide.

"Grasses that have extensive root systems, such as rabbitfoot grass and cordgrass, do a better job of providing surface area for microbes that help volatilize selenium into dimethyl selenide," said Terry.

Prior studies have found dimethyl selenide to be about 500 times less toxic than the inorganic forms of selenium.

"Converting the selenium into gas helps get the chemical out of the area entirely rather than having it build up in sediment or plant tissue," said Terry. "Air currents carry away the dimethyl selenide to the eastern part of the state where the soil is so deficient in selenium that farmers there actually feed their livestock selenium supplements to keep them healthy."

Terry noted that the air in the northern hemisphere already contains about 10,000 metric tons of volatile selenium from volcanoes, soil and plants. "The amount of dimethyl selenide released by wetlands would be negligible in comparison," he said.

The researchers are studying ways - including using genetically engineered plants - to improve volatilization rates throughout the year. Currently, volatilization is greatest during warmer months. When winter and fall periods were taken into account, an average of 9.4 percent of the total selenium entering the rabbitfoot grass pond was volatilized.

Terry said wetland plants could become a major wastewater remediation tool for both agriculture and industry.

"The upshot is that wetlands are a very efficient and affordable solution to ridding polluted water of a toxic chemical," said Terry. "Plants grow year after year, and while a constructed wetland system would need to be monitored, it would be relatively easy to maintain."

The Electric Power Research Institute helped support the UC Berkeley study.


Sarah Yang | EurekAlert!
Further information:
http://www.berkeley.edu/news/media/releases/2003/01/02_filter.html

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>