Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shifts in rice farming practices in China reduce greenhouse gas methane

20.12.2002


Changes to farming practices in rice paddies in China may have led to a decrease in methane emissions, and an observed decline in the rate that methane has entered the Earth’s atmosphere over the last 20 years, a NASA-funded study finds.



Changsheng Li, a professor of natural resources in the University of New Hampshire’s Institute for the Study of Earth, Oceans, and Space, and lead author of the study, notes that in the early 1980s Chinese farmers began draining their paddies midway through the rice growing season when they learned that replacing a strategy of continuous flooding would in fact increase their yields and save water. As an unintended consequence of this shift, less methane was emitted out of rice paddies.

Methane is 21 times more potent as a greenhouse gas than carbon dioxide (CO2) over 100 years. At the same time, since 1750, methane concentrations in the atmosphere have more than doubled, though the rate of increase has slowed during the 1980-90s.


"There are three major greenhouse gases emitted from agricultural lands-carbon dioxide, methane and nitrous oxide," said Li. "Methane has a much greater warming potential than CO2, but at the same time, methane is very sensitive to management practices." Currently, about 8 percent of global methane emissions come from the world’s rice paddies.

In an effort to reduce water use, farmers in China found that if they drained the soils, they could get higher yields. That’s because draining stimulates rice root development, and also accelerates decomposition of organic matter in the soil to produce more inorganic nitrogen, an important fertilizer. Methane is produced by soil microbes in paddy soils under anaerobic conditions, or in the absence of air or free oxygen. Midseason drainage aerates the soil again, and hence interrupts methane production.

Li and his colleagues recorded reductions in methane caused by draining practices at several experimental sites in China and the U.S. At the same time, they observed that the amounts of methane reduction varied greatly in space and time due to complex interactions among many factors.

The researchers spent more than 10 years developing a biogeochemical model, called the Denitrification-Decomposition (DNDC) model, which would handle all the major factors relating to methane emissions from rice paddies. These factors included weather, soil properties, crop types and rotations, tillage, fertilizer and manure use, and water management. The model was employed in the study to scale up the observed impacts of water management from the local sites to larger regional scales. Remotely sensed data from the NASA/U.S. Geological Survey Landsat Thematic Mapper (TM) satellite were utilized to locate the geographic distributions and quantify the acreage of all the rice fields in China. A Geographic Information System database amended with this Landsat data was constructed to support the model runs at the national scale and to predict methane emissions from all rice fields in the country.

The researchers adopted 1990 as a mean representative year as they had detailed, reliable data for that year, and then ran the model with two water management scenarios to cover the changes in farming practices from 1980 to 2000. The two scenarios included continuous flooding over each season, and draining of paddy water three times over the course of each season.

When the two model runs were compared, the researchers found that methane emissions from China’s paddy fields were reduced over that time period by about 40 percent, or by 5 million metric tons per year-an amount roughly equivalent to the decrease in the rate of growth of total global methane emissions.

"The modeled decline in methane emissions in China is consistent with the slowing of the growth rate of atmospheric methane during the same period," Li said. "Still, more work will be needed to further verify the relationship demonstrated in this study with limited data points."

Demand for rice in Asia is projected to increase by 70 percent over the next 30 years, and agriculture currently accounts for about 86 percent of total water consumption in Asia, according to a recent report from the International Rice Research Institute. Changes to management practices like this will be more important and likely in the future as the world’s water resources become increasingly limited, Li said.

"Just like the Chinese farmers did, if farmers around the world change management practices, we can increase yields, save water and reduce methane as a greenhouse gas," Li said. "That’s a win-win situation."



The study, which appears in the print version of Geophysical Research Letters in late December, was funded by NASA through grants from the multi-agency Terrestrial Ecosystems and Global Change Program, and also NASA’s Earth Science Enterprise.

Krishna Ramanujan | EurekAlert!
Further information:
http://www.gsfc.nasa.gov/topstory/2002/1204paddies.html
http://www.gsfc.nasa.gov/

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>