Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Shifts in rice farming practices in China reduce greenhouse gas methane


Changes to farming practices in rice paddies in China may have led to a decrease in methane emissions, and an observed decline in the rate that methane has entered the Earth’s atmosphere over the last 20 years, a NASA-funded study finds.

Changsheng Li, a professor of natural resources in the University of New Hampshire’s Institute for the Study of Earth, Oceans, and Space, and lead author of the study, notes that in the early 1980s Chinese farmers began draining their paddies midway through the rice growing season when they learned that replacing a strategy of continuous flooding would in fact increase their yields and save water. As an unintended consequence of this shift, less methane was emitted out of rice paddies.

Methane is 21 times more potent as a greenhouse gas than carbon dioxide (CO2) over 100 years. At the same time, since 1750, methane concentrations in the atmosphere have more than doubled, though the rate of increase has slowed during the 1980-90s.

"There are three major greenhouse gases emitted from agricultural lands-carbon dioxide, methane and nitrous oxide," said Li. "Methane has a much greater warming potential than CO2, but at the same time, methane is very sensitive to management practices." Currently, about 8 percent of global methane emissions come from the world’s rice paddies.

In an effort to reduce water use, farmers in China found that if they drained the soils, they could get higher yields. That’s because draining stimulates rice root development, and also accelerates decomposition of organic matter in the soil to produce more inorganic nitrogen, an important fertilizer. Methane is produced by soil microbes in paddy soils under anaerobic conditions, or in the absence of air or free oxygen. Midseason drainage aerates the soil again, and hence interrupts methane production.

Li and his colleagues recorded reductions in methane caused by draining practices at several experimental sites in China and the U.S. At the same time, they observed that the amounts of methane reduction varied greatly in space and time due to complex interactions among many factors.

The researchers spent more than 10 years developing a biogeochemical model, called the Denitrification-Decomposition (DNDC) model, which would handle all the major factors relating to methane emissions from rice paddies. These factors included weather, soil properties, crop types and rotations, tillage, fertilizer and manure use, and water management. The model was employed in the study to scale up the observed impacts of water management from the local sites to larger regional scales. Remotely sensed data from the NASA/U.S. Geological Survey Landsat Thematic Mapper (TM) satellite were utilized to locate the geographic distributions and quantify the acreage of all the rice fields in China. A Geographic Information System database amended with this Landsat data was constructed to support the model runs at the national scale and to predict methane emissions from all rice fields in the country.

The researchers adopted 1990 as a mean representative year as they had detailed, reliable data for that year, and then ran the model with two water management scenarios to cover the changes in farming practices from 1980 to 2000. The two scenarios included continuous flooding over each season, and draining of paddy water three times over the course of each season.

When the two model runs were compared, the researchers found that methane emissions from China’s paddy fields were reduced over that time period by about 40 percent, or by 5 million metric tons per year-an amount roughly equivalent to the decrease in the rate of growth of total global methane emissions.

"The modeled decline in methane emissions in China is consistent with the slowing of the growth rate of atmospheric methane during the same period," Li said. "Still, more work will be needed to further verify the relationship demonstrated in this study with limited data points."

Demand for rice in Asia is projected to increase by 70 percent over the next 30 years, and agriculture currently accounts for about 86 percent of total water consumption in Asia, according to a recent report from the International Rice Research Institute. Changes to management practices like this will be more important and likely in the future as the world’s water resources become increasingly limited, Li said.

"Just like the Chinese farmers did, if farmers around the world change management practices, we can increase yields, save water and reduce methane as a greenhouse gas," Li said. "That’s a win-win situation."

The study, which appears in the print version of Geophysical Research Letters in late December, was funded by NASA through grants from the multi-agency Terrestrial Ecosystems and Global Change Program, and also NASA’s Earth Science Enterprise.

Krishna Ramanujan | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Algorithm could streamline harvesting of hand-picked crops
13.03.2018 | University of Illinois College of Engineering

nachricht A global conflict: agricultural production vs. biodiversity
06.03.2018 | Georg-August-Universität Göttingen

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>