Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Riverside entomologists report bee-dancing brings more food to honeybee colonies

16.12.2002


Honeybees communicate by dancing. The dances tell worker bees where to find nectar. A UC Riverside study reports that under natural foraging conditions the communication of distance and direction in the dance language can increase the food collection of honeybee colonies. The study also confirms that bees use this directional information in locating the food sources advertised in the dance.


Diagram of the honeybee dance. (Credit: P. Kirk Visscher.)


Honeybees



Based on work done in 2001 in the Agricultural Experiment Station at UC Riverside, P. Kirk Visscher, professor of entomology, and Gavin Sherman, former graduate student in the department of entomology, report their findings in a paper entitled "Honeybee colonies achieve fitness through dancing" in the journal Nature.

The honey bee "dance language," first described in the 1940s, reflects the distance and direction to the food source visited by the forager. A bee returning from a rich source of food will "dance" on the vertical comb surface by running in a circle. On each revolution, the bee will bisect the circle at an angle. The angle with respect to 12 o’clock represents the angle to fly with respect to the sun. If the bee ran from 6 to 12 o’clock (i.e., straight up), this would communicate to the other bees to fly directly towards the sun. As the bee dances, it also waggles its abdomen whilst crossing the circle. The number of waggles tells the other bees how far away from the beehive the nectar is. The more the waggles, the greater the distance to the nectar.


"The dance language is the most complex example of symbolic communication in any animal other than primates," said Visscher. "Our study is the first test of the adaptive value of the dance language. It provides insights that may be of use in manipulating foraging behavior of honeybees for pollination of crops."

There has been a long-simmering controversy over whether the direction and distance information in the dance is actually decoded by the recruits which follow the dances, or whether recruitment is based on the recruits learning only the odor food source from the dancer, and subsequently searching out the food based on odor alone. Several experiments have been published that have convinced most scientists that the bees can decode the direction and distance information, but the relative role of odor and location information has remained in question.

To test the effect of the information in the dance, Sherman and Visscher turned the normally vertical beehive on its side. With the combs horizontal, there was no upward reference for the dancer to use in orienting her waggle runs, and it performed disoriented dances, in which the waggle runs pointed in all directions. To experimentally restore dance information, the experimenters provided a directional light source, which the bees interpreted as the sun. The bees proceeded to do well-oriented dances at the angle relative to the light.

Using these treatments, Sherman and Visscher compared the weight gained by colonies which had oriented dances with that gained by colonies with disoriented dances. To control for colony-to-colony differences, the researchers exchanged treatments periodically. Overall, colonies with oriented dances collected more food, they found. However, this effect was strong only during the winter season. During the summer there was a weak difference, during autumn no difference in food collection. "In the ecology of honeybee colony, though, even short periods of intense food collection can make the difference between survival and death by starvation," Visscher said.

The UC Riverside study also addresses the issues of the dance language controversy. Bees were recruited to syrup feeders in greater numbers when they followed dances which contained distance and direction information as well as odor than when they followed disoriented dances which could only communicate odor. However, at feeders 250 meters from the colony, about one quarter of the recruits did arrive with only odor information. As the distance increased, though, the bees from hives with oriented dances comprised an increasing proportion of the recruits.

Bees have been producing honey as they do today for at least 150 million years. They produce honey as food stores for the hive during the long months of winter when flowers are not in bloom and when, therefore, little or no nectar is available to them. The honeybee has three pairs of legs, four wings, a stinger and a special stomach that holds nectar. It is the only insect that produces food eaten by humans.

The University of California’s entomological research in Southern California dates back to 1906. Over the years, the UC Riverside Department of Entomology has excelled in virtually all phases of entomological research and developed a scope of expertise unmatched by any other entomology department in the country. Today, the UC Riverside campus is on the cutting edge of advanced entomological research and features a unique new Insectary and Quarantine facility that permits the safe study of exotic organisms from around the world.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.entomology.ucr.edu/people/visscher.html
http://www.cnas.ucr.edu/
http://www.entomology.ucr.edu/about/newbuildings.html

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>