Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Riverside entomologists report bee-dancing brings more food to honeybee colonies

16.12.2002


Honeybees communicate by dancing. The dances tell worker bees where to find nectar. A UC Riverside study reports that under natural foraging conditions the communication of distance and direction in the dance language can increase the food collection of honeybee colonies. The study also confirms that bees use this directional information in locating the food sources advertised in the dance.


Diagram of the honeybee dance. (Credit: P. Kirk Visscher.)


Honeybees



Based on work done in 2001 in the Agricultural Experiment Station at UC Riverside, P. Kirk Visscher, professor of entomology, and Gavin Sherman, former graduate student in the department of entomology, report their findings in a paper entitled "Honeybee colonies achieve fitness through dancing" in the journal Nature.

The honey bee "dance language," first described in the 1940s, reflects the distance and direction to the food source visited by the forager. A bee returning from a rich source of food will "dance" on the vertical comb surface by running in a circle. On each revolution, the bee will bisect the circle at an angle. The angle with respect to 12 o’clock represents the angle to fly with respect to the sun. If the bee ran from 6 to 12 o’clock (i.e., straight up), this would communicate to the other bees to fly directly towards the sun. As the bee dances, it also waggles its abdomen whilst crossing the circle. The number of waggles tells the other bees how far away from the beehive the nectar is. The more the waggles, the greater the distance to the nectar.


"The dance language is the most complex example of symbolic communication in any animal other than primates," said Visscher. "Our study is the first test of the adaptive value of the dance language. It provides insights that may be of use in manipulating foraging behavior of honeybees for pollination of crops."

There has been a long-simmering controversy over whether the direction and distance information in the dance is actually decoded by the recruits which follow the dances, or whether recruitment is based on the recruits learning only the odor food source from the dancer, and subsequently searching out the food based on odor alone. Several experiments have been published that have convinced most scientists that the bees can decode the direction and distance information, but the relative role of odor and location information has remained in question.

To test the effect of the information in the dance, Sherman and Visscher turned the normally vertical beehive on its side. With the combs horizontal, there was no upward reference for the dancer to use in orienting her waggle runs, and it performed disoriented dances, in which the waggle runs pointed in all directions. To experimentally restore dance information, the experimenters provided a directional light source, which the bees interpreted as the sun. The bees proceeded to do well-oriented dances at the angle relative to the light.

Using these treatments, Sherman and Visscher compared the weight gained by colonies which had oriented dances with that gained by colonies with disoriented dances. To control for colony-to-colony differences, the researchers exchanged treatments periodically. Overall, colonies with oriented dances collected more food, they found. However, this effect was strong only during the winter season. During the summer there was a weak difference, during autumn no difference in food collection. "In the ecology of honeybee colony, though, even short periods of intense food collection can make the difference between survival and death by starvation," Visscher said.

The UC Riverside study also addresses the issues of the dance language controversy. Bees were recruited to syrup feeders in greater numbers when they followed dances which contained distance and direction information as well as odor than when they followed disoriented dances which could only communicate odor. However, at feeders 250 meters from the colony, about one quarter of the recruits did arrive with only odor information. As the distance increased, though, the bees from hives with oriented dances comprised an increasing proportion of the recruits.

Bees have been producing honey as they do today for at least 150 million years. They produce honey as food stores for the hive during the long months of winter when flowers are not in bloom and when, therefore, little or no nectar is available to them. The honeybee has three pairs of legs, four wings, a stinger and a special stomach that holds nectar. It is the only insect that produces food eaten by humans.

The University of California’s entomological research in Southern California dates back to 1906. Over the years, the UC Riverside Department of Entomology has excelled in virtually all phases of entomological research and developed a scope of expertise unmatched by any other entomology department in the country. Today, the UC Riverside campus is on the cutting edge of advanced entomological research and features a unique new Insectary and Quarantine facility that permits the safe study of exotic organisms from around the world.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.entomology.ucr.edu/people/visscher.html
http://www.cnas.ucr.edu/
http://www.entomology.ucr.edu/about/newbuildings.html

More articles from Agricultural and Forestry Science:

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

nachricht New rice fights off drought
04.04.2017 | RIKEN

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>