Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From designer milk to ’green’ cows: predictions for milk and dairy products in the next 50 years

26.11.2002


Old MacDonald will be surprised when he sees what’s headed for his dairy farm: specially bred cows that naturally produce low-fat milk, designer milk that boosts the immune system, and "green" cows -- engineered to produce less methane to help stem global warming. All are among the changes predicted for the future of the milk and dairy industry over the next 50 years.



These and other developments are described in a special report commemorating the 50th anniversary of the Journal of Agricultural and Food Chemistry, a peer-reviewed publication of the American Chemical Society, the world’s largest scientific society. The report is written by Lawrence K. Creamer, of the Fonterra Research Centre in New Zealand, and his associates. It will be published in the Dec. 4 print issue of the journal.

Among the predictions:


Designer milk -- Organic milks are already available at supermarkets, but a new breed of designer milks are on the drawing board that will boost immunity, improve lactose utilization and relieve diarrhea. Advances in biotechnology have made it all possible: Got designer milk?

Naturally low-fat milk -- Recent advances in biotechnology have identified a gene for milkfat synthesis that may one day allow scientists to selectively breed cows that naturally produce low-fat milk. This and other developments are moving closer to reality as researchers identify genetic markers in cows for diseases or desirable traits that will enable scientists to improve the efficiency of milk production and select for milk with specific traits. Although the development of genetically modified cows and milk products shows promise, consumer resistance to such products will remain a barrier well into the future, the researchers predict.

Green cows -- Researchers are trying to develop green cows. No, not green-colored cows, but environmentally cleaner cows. Cattle, via belching, produce a significant amount of methane as a result of digestion. Methane (from cows and other sources) is a major contributor to the greenhouse effect in the atmosphere, second only to carbon dioxide, which many scientists think contributes to global warming. Researchers believe that they can alter cattle digestion, either by removing the microorganisms that produce methane from their stomachs or by creating microorganisms that can produce metabolic products other than methane. The end result: green cows.

Milk alternatives -- Competition from nondairy materials will increase, driven by consumer demand. Already, supermarkets have been flooded with alternative soy products, from soybean milk to soy-based ice cream. These products offer options for those that are allergic to milk or concerned about dairy safety. In the pipeline: useful milk proteins produced not from cows, but from recombinant organisms, such as yeasts. Still, experts predict that milk will continue to be a viable nutrition source in the future.

Renewed emphasis on food safety -- Underlying the new developments in dairy farming will be an increased emphasis on food safety. Diseases such as mad cow and foot and mouth disease are being fought with government regulatory programs and rigorous farm management, as well as advances in biotechnology.

Beverly Hassell | EurekAlert!
Further information:
http://www.acs.org/

More articles from Agricultural and Forestry Science:

nachricht New study shows producers where and how to grow cellulosic biofuel crops
17.01.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Robotic weeders: to a farm near you?
10.01.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>