Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pesticide resistance warning after gene discovery

27.09.2002


Scientists have raised concerns following the discovery of a single gene that gives vinegar flies resistance to a wide range of pesticides, including the banned DDT.

Scientists are worried as this single mutation unexpectedly provides the fly (Drosophila melanogaster) with resistance to a range of commonly available, but chemically unrelated, pesticides. Significant also, is this species is rarely targeted with pesticides and many of the chemicals it is resistant to, it has never been exposed to before.

Researchers at the University of Melbourne and the Centre for Environmental Stress and Adaptation Research (CESAR) that made the discovery believe the mutation arose in Drosophila soon after the introduction of DDT and has since spread throughout the world. The gene has also persisted rather than, as expected, disappearing as the use of DDT around the world declined.



"This is a warning that we may need to rethink our overall strategies to control insect pests," says University of Melbourne geneticist, Dr Phil Batterham, and Program Leader for the Chemical Stress Program within CESAR, a special research centre that includes researchers from the Universities of Melbourne, La Trobe and Monash.

"The fact that a single mutation can confer resistance to DDT and a range of unrelated pesticides, even to those the species has never encountered, reveals new risks and costs to the chemical control of pest insects. Unless we reassess our current methods of pest management, our future options for control may become severely restricted," he says.

"If this mutation was found on a pest insect, many options for the chemical control of that insect would have been removed."

The research is published in the latest edition of the prestigious journal Science.

Batterham suggests that it is now imperative that research and industry focus on refining integrated pest management, which incorporates a broad arsenal of pest control measures including biological control and crop management techniques.

The Drosophila resistance gene, named Cyp6g1, is part of a large family of genes called the Cytochrome P450 genes that are found in many species, including humans.

Previous studies have implicated some members of this P450 family in pesticide resistance. However the function of the majority of the 90 Drosophila P450 genes is unknown.

CESAR is now analysing these genes to determine their function in Drosophila and in the pest insects, the cotton bollworm (Helicoverpa armigera) and the sheep blowfly responsible for flystrike (Lucilia cuprina).

"Our capacity to control pests would be significantly improved if we understood the defence mechanisms controlled by these genes," says Batterham.

In the Drosophila, Cyp6g1 confers resistance by producing up to 100 times more than the normal level of protein that breaks down DDT and other pesticides. Given the number of P450 genes present in Drosophila, it was unexpected that a single version of one gene could be associated with such widespread resistance, and that this resistance also applied to a wide range of compounds that bear no resemblance to each other in structure or mode of function. These compounds include organochlorines, organophosphorous, carbamate and insect growth regulator insecticides.

"Our research, so far, does not unequivocally demonstrate that Cyp6g1 is the sole culprit for this resistance, but the current evidence leaves little doubt that about its central role," says Batterham.

Species will normally lose mutations that protected it against a particular pesticide once that pesticide ceases to be used. This is because, in the absence of the pesticide, the mutation suddenly confers a disadvantage. In this case, the Drosophila has maintained the resistance gene and is still ’fit’. That is, the mutation does not confer any disadvantage, so it persists in the population.

"This highlights more than ever that what we do today to control pests could irreversibly change the gene pool of that species," says Batterham.

"Researchers investigating pesticide resistance sometimes fails to take sufficient notice of research into Drosophila. It maybe a model genetic organism, but it is still an insect and things that happen to Drosophila happen to other insects," he warns.

"This research showed how easy it is for a single mutation to have such a diverse impact. A similar mutation in a pest species could have devastating consequences" he says.

The primary research was done by Dr. Phil Daborn (a former PhD student under Dr Batterham and Professor John McKenzie at the University of Melbourne) in the laboratory of Professor Richard ffrench-Constant at the University of Bath and current University of Melbourne students, Michael Bogwitz and Trent Perry, supervised by Dr. Batterham and Dr. David Heckel. Other collaborators include Professor Tom Wilson at Colorado State University and Dr. Rene Feyereisen at INRA (Centre de Recherches d’Antibes, France).

Jason Major | EurekAlert!
Further information:
http://www.unimelb.edu.au/

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>