Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pesticide resistance warning after gene discovery

27.09.2002


Scientists have raised concerns following the discovery of a single gene that gives vinegar flies resistance to a wide range of pesticides, including the banned DDT.

Scientists are worried as this single mutation unexpectedly provides the fly (Drosophila melanogaster) with resistance to a range of commonly available, but chemically unrelated, pesticides. Significant also, is this species is rarely targeted with pesticides and many of the chemicals it is resistant to, it has never been exposed to before.

Researchers at the University of Melbourne and the Centre for Environmental Stress and Adaptation Research (CESAR) that made the discovery believe the mutation arose in Drosophila soon after the introduction of DDT and has since spread throughout the world. The gene has also persisted rather than, as expected, disappearing as the use of DDT around the world declined.



"This is a warning that we may need to rethink our overall strategies to control insect pests," says University of Melbourne geneticist, Dr Phil Batterham, and Program Leader for the Chemical Stress Program within CESAR, a special research centre that includes researchers from the Universities of Melbourne, La Trobe and Monash.

"The fact that a single mutation can confer resistance to DDT and a range of unrelated pesticides, even to those the species has never encountered, reveals new risks and costs to the chemical control of pest insects. Unless we reassess our current methods of pest management, our future options for control may become severely restricted," he says.

"If this mutation was found on a pest insect, many options for the chemical control of that insect would have been removed."

The research is published in the latest edition of the prestigious journal Science.

Batterham suggests that it is now imperative that research and industry focus on refining integrated pest management, which incorporates a broad arsenal of pest control measures including biological control and crop management techniques.

The Drosophila resistance gene, named Cyp6g1, is part of a large family of genes called the Cytochrome P450 genes that are found in many species, including humans.

Previous studies have implicated some members of this P450 family in pesticide resistance. However the function of the majority of the 90 Drosophila P450 genes is unknown.

CESAR is now analysing these genes to determine their function in Drosophila and in the pest insects, the cotton bollworm (Helicoverpa armigera) and the sheep blowfly responsible for flystrike (Lucilia cuprina).

"Our capacity to control pests would be significantly improved if we understood the defence mechanisms controlled by these genes," says Batterham.

In the Drosophila, Cyp6g1 confers resistance by producing up to 100 times more than the normal level of protein that breaks down DDT and other pesticides. Given the number of P450 genes present in Drosophila, it was unexpected that a single version of one gene could be associated with such widespread resistance, and that this resistance also applied to a wide range of compounds that bear no resemblance to each other in structure or mode of function. These compounds include organochlorines, organophosphorous, carbamate and insect growth regulator insecticides.

"Our research, so far, does not unequivocally demonstrate that Cyp6g1 is the sole culprit for this resistance, but the current evidence leaves little doubt that about its central role," says Batterham.

Species will normally lose mutations that protected it against a particular pesticide once that pesticide ceases to be used. This is because, in the absence of the pesticide, the mutation suddenly confers a disadvantage. In this case, the Drosophila has maintained the resistance gene and is still ’fit’. That is, the mutation does not confer any disadvantage, so it persists in the population.

"This highlights more than ever that what we do today to control pests could irreversibly change the gene pool of that species," says Batterham.

"Researchers investigating pesticide resistance sometimes fails to take sufficient notice of research into Drosophila. It maybe a model genetic organism, but it is still an insect and things that happen to Drosophila happen to other insects," he warns.

"This research showed how easy it is for a single mutation to have such a diverse impact. A similar mutation in a pest species could have devastating consequences" he says.

The primary research was done by Dr. Phil Daborn (a former PhD student under Dr Batterham and Professor John McKenzie at the University of Melbourne) in the laboratory of Professor Richard ffrench-Constant at the University of Bath and current University of Melbourne students, Michael Bogwitz and Trent Perry, supervised by Dr. Batterham and Dr. David Heckel. Other collaborators include Professor Tom Wilson at Colorado State University and Dr. Rene Feyereisen at INRA (Centre de Recherches d’Antibes, France).

Jason Major | EurekAlert!
Further information:
http://www.unimelb.edu.au/

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>