Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pesticide resistance warning after gene discovery

27.09.2002


Scientists have raised concerns following the discovery of a single gene that gives vinegar flies resistance to a wide range of pesticides, including the banned DDT.

Scientists are worried as this single mutation unexpectedly provides the fly (Drosophila melanogaster) with resistance to a range of commonly available, but chemically unrelated, pesticides. Significant also, is this species is rarely targeted with pesticides and many of the chemicals it is resistant to, it has never been exposed to before.

Researchers at the University of Melbourne and the Centre for Environmental Stress and Adaptation Research (CESAR) that made the discovery believe the mutation arose in Drosophila soon after the introduction of DDT and has since spread throughout the world. The gene has also persisted rather than, as expected, disappearing as the use of DDT around the world declined.



"This is a warning that we may need to rethink our overall strategies to control insect pests," says University of Melbourne geneticist, Dr Phil Batterham, and Program Leader for the Chemical Stress Program within CESAR, a special research centre that includes researchers from the Universities of Melbourne, La Trobe and Monash.

"The fact that a single mutation can confer resistance to DDT and a range of unrelated pesticides, even to those the species has never encountered, reveals new risks and costs to the chemical control of pest insects. Unless we reassess our current methods of pest management, our future options for control may become severely restricted," he says.

"If this mutation was found on a pest insect, many options for the chemical control of that insect would have been removed."

The research is published in the latest edition of the prestigious journal Science.

Batterham suggests that it is now imperative that research and industry focus on refining integrated pest management, which incorporates a broad arsenal of pest control measures including biological control and crop management techniques.

The Drosophila resistance gene, named Cyp6g1, is part of a large family of genes called the Cytochrome P450 genes that are found in many species, including humans.

Previous studies have implicated some members of this P450 family in pesticide resistance. However the function of the majority of the 90 Drosophila P450 genes is unknown.

CESAR is now analysing these genes to determine their function in Drosophila and in the pest insects, the cotton bollworm (Helicoverpa armigera) and the sheep blowfly responsible for flystrike (Lucilia cuprina).

"Our capacity to control pests would be significantly improved if we understood the defence mechanisms controlled by these genes," says Batterham.

In the Drosophila, Cyp6g1 confers resistance by producing up to 100 times more than the normal level of protein that breaks down DDT and other pesticides. Given the number of P450 genes present in Drosophila, it was unexpected that a single version of one gene could be associated with such widespread resistance, and that this resistance also applied to a wide range of compounds that bear no resemblance to each other in structure or mode of function. These compounds include organochlorines, organophosphorous, carbamate and insect growth regulator insecticides.

"Our research, so far, does not unequivocally demonstrate that Cyp6g1 is the sole culprit for this resistance, but the current evidence leaves little doubt that about its central role," says Batterham.

Species will normally lose mutations that protected it against a particular pesticide once that pesticide ceases to be used. This is because, in the absence of the pesticide, the mutation suddenly confers a disadvantage. In this case, the Drosophila has maintained the resistance gene and is still ’fit’. That is, the mutation does not confer any disadvantage, so it persists in the population.

"This highlights more than ever that what we do today to control pests could irreversibly change the gene pool of that species," says Batterham.

"Researchers investigating pesticide resistance sometimes fails to take sufficient notice of research into Drosophila. It maybe a model genetic organism, but it is still an insect and things that happen to Drosophila happen to other insects," he warns.

"This research showed how easy it is for a single mutation to have such a diverse impact. A similar mutation in a pest species could have devastating consequences" he says.

The primary research was done by Dr. Phil Daborn (a former PhD student under Dr Batterham and Professor John McKenzie at the University of Melbourne) in the laboratory of Professor Richard ffrench-Constant at the University of Bath and current University of Melbourne students, Michael Bogwitz and Trent Perry, supervised by Dr. Batterham and Dr. David Heckel. Other collaborators include Professor Tom Wilson at Colorado State University and Dr. Rene Feyereisen at INRA (Centre de Recherches d’Antibes, France).

Jason Major | EurekAlert!
Further information:
http://www.unimelb.edu.au/

More articles from Agricultural and Forestry Science:

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

nachricht Ecological intensification of agriculture
09.09.2016 | Julius-Maximilians-Universität Würzburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>