Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Will global warming improve crop production?


Winter temperatures are on the rise and scientists note this change will actually increase a plant’s exposure to freezing temperatures

Scientists from Agriculture and Agri-Food Canada predict crops will be at a greater risk of winter damage in the future even though the climate will be warmer. Perennial forage crops are grown on more than 40% of the cultivated land in Eastern Canada and other regions of North America, where they constitute the backbone of the livestock industry. The study of the impact of this significant warming trend is published in the September-October issue of Agronomy Journal, published by the American Society of Agronomy.

The loss of snow cover due to warmer winter conditions will increase exposure of plants to freezing temperatures. The authors also conclude that the occurrence of above-freezing temperatures and loss of cold hardiness will increase with climate warming. Forage crops are also likely to enter the winter in a lower state of cold hardiness due to warmer fall temperatures. Winter temperatures are expected to increase by 2 to 6 degrees C over the next 50 years in Eastern Canada; however, survival of perennial crops over the winter months requires the right climatic conditions. Sub-freezing temperature, loss of cold hardiness due to warm periods, ice encasement, and soil heaving can result in frequent crop losses.

Gilles Bélanger, project leader, said, "This might be a surprise to many that warmer winter conditions will mean greater risks to perennial forage crops. Perennial forage crops in Canada and in the northern part of the United States prefer the comfort of a nice snow cover after a good rest period in the fall. Rain, ice, and no snow cover in the middle of the winter will occur more often in the future; this brings no comfort to perennial forage crops."

For this study, conducted from 1999 to 2001, scientists developed agro-climatic indices related to the effect of climate conditions on winter survival of perennial forage crops. These agro-climatic indices were then calculated for current conditions (1961-90) and two future periods (2010-39, 2040-69). Sixty-nine climatic stations located in all agricultural areas of Eastern Canada were used.

For forage producers, climate change will mean increased risks in an agricultural industry already facing major challenges. The authors of the study, however, are confident that current and future research efforts in the development of improved cultivars and the adaptation of management practices will help producers make the best of climate change.

Sara Procknow | EurekAlert!
Further information:,

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>