Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Will global warming improve crop production?

19.09.2002


Winter temperatures are on the rise and scientists note this change will actually increase a plant’s exposure to freezing temperatures

Scientists from Agriculture and Agri-Food Canada predict crops will be at a greater risk of winter damage in the future even though the climate will be warmer. Perennial forage crops are grown on more than 40% of the cultivated land in Eastern Canada and other regions of North America, where they constitute the backbone of the livestock industry. The study of the impact of this significant warming trend is published in the September-October issue of Agronomy Journal, published by the American Society of Agronomy.

The loss of snow cover due to warmer winter conditions will increase exposure of plants to freezing temperatures. The authors also conclude that the occurrence of above-freezing temperatures and loss of cold hardiness will increase with climate warming. Forage crops are also likely to enter the winter in a lower state of cold hardiness due to warmer fall temperatures. Winter temperatures are expected to increase by 2 to 6 degrees C over the next 50 years in Eastern Canada; however, survival of perennial crops over the winter months requires the right climatic conditions. Sub-freezing temperature, loss of cold hardiness due to warm periods, ice encasement, and soil heaving can result in frequent crop losses.



Gilles Bélanger, project leader, said, "This might be a surprise to many that warmer winter conditions will mean greater risks to perennial forage crops. Perennial forage crops in Canada and in the northern part of the United States prefer the comfort of a nice snow cover after a good rest period in the fall. Rain, ice, and no snow cover in the middle of the winter will occur more often in the future; this brings no comfort to perennial forage crops."

For this study, conducted from 1999 to 2001, scientists developed agro-climatic indices related to the effect of climate conditions on winter survival of perennial forage crops. These agro-climatic indices were then calculated for current conditions (1961-90) and two future periods (2010-39, 2040-69). Sixty-nine climatic stations located in all agricultural areas of Eastern Canada were used.

For forage producers, climate change will mean increased risks in an agricultural industry already facing major challenges. The authors of the study, however, are confident that current and future research efforts in the development of improved cultivars and the adaptation of management practices will help producers make the best of climate change.

Sara Procknow | EurekAlert!
Further information:
http://agron.scijournals.org
http://www.agronomy.org,
http://www.crops.org

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>