Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Report focuses on the science and safety of genetically modified crops

21.08.2002


Events like the September 2000 discovery of biologically engineered corn in fast food tortillas have focused media attention and stirred controversy about genetically modified organisms. While new approaches in agricultural biotechnology have improved crop quality and yield, the incorporation of genes from other organisms into food plants has raised concerns about possible health risks and environmental consequences. A new report from the American Academy of Microbiology (AAM) looks at the case of a bacterium called Bacillus thuringiensis (Bt) and its use in agriculture in a careful examination of what we know--and what we need to know--about transgenic plants.



The document, "100 Years of Bacillus thuringiensis: A Critical Scientific Assessment," follows the experience with Bt since it was discovered over 100 years ago as a cause of disease in Japanese silkworms. Bt insecticides, made of bacterial spores and protein crystals, have been applied to crops in spray products since the 1940s. In 1987, researchers discovered that the insecticidal crystal protein (ICP) genes from Bt could be introduced into plants to produce pest-resistant crops. It is now estimated that 12 million hectares, or about 29,652,000 acres, of insect-protected crops with Bt ICPs are planted worldwide each year. Corn and cotton are most common, but the release of Bt rice, soybeans, canola and some fruits and vegetables is expected soon.

Bt crops, the report says, have many positive effects. Reducing insect damage with insecticidal proteins reduces fungal toxins in the food supply, while better crops improve farmers’ livelihood. Replacing chemical pesticides has reduced toxic hazards to the environment and to farm-workers. Yet concerns related to Bt crops include the potential for harm to organisms other than the insects targeted by Bt, the development of Bt-resistant insects, the possibility of toxicity or allergenic properties in Bt crops or their pollen, and the consequences of gene flow to related wild plants or other organisms.


The report details the issues, assesses current scientific knowledge, and compares Bt technology to alternatives. It presents the conclusions of twenty-five (25) scientists with expertise in plant biology, microbiology, entomology and ecology brought together in November of 2001 for 21/2 days of in-depth discussion of Bt technology and its intended and unintended outcomes. Specific recommendations are made for future research, evaluation and environmental monitoring, scientific coordination and exchange, and public education.


The American Academy of Microbiology is an honorific leadership group within the American Society for Microbiology (ASM) whose mission is to recognize excellence and foster knowledge in the microbiological sciences. Its programs include convening critical issues colloquia and developing consensus-building position papers that provide expert scientific opinion on current and emerging issues in microbiology.

Andrea Lohse | EurekAlert!
Further information:
http://www.asmusa.org/
http://www.asmusa.org/acasrc/pdfs/Btreport.pdf

More articles from Agricultural and Forestry Science:

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

nachricht Ecological intensification of agriculture
09.09.2016 | Julius-Maximilians-Universität Würzburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>