Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Report focuses on the science and safety of genetically modified crops

21.08.2002


Events like the September 2000 discovery of biologically engineered corn in fast food tortillas have focused media attention and stirred controversy about genetically modified organisms. While new approaches in agricultural biotechnology have improved crop quality and yield, the incorporation of genes from other organisms into food plants has raised concerns about possible health risks and environmental consequences. A new report from the American Academy of Microbiology (AAM) looks at the case of a bacterium called Bacillus thuringiensis (Bt) and its use in agriculture in a careful examination of what we know--and what we need to know--about transgenic plants.



The document, "100 Years of Bacillus thuringiensis: A Critical Scientific Assessment," follows the experience with Bt since it was discovered over 100 years ago as a cause of disease in Japanese silkworms. Bt insecticides, made of bacterial spores and protein crystals, have been applied to crops in spray products since the 1940s. In 1987, researchers discovered that the insecticidal crystal protein (ICP) genes from Bt could be introduced into plants to produce pest-resistant crops. It is now estimated that 12 million hectares, or about 29,652,000 acres, of insect-protected crops with Bt ICPs are planted worldwide each year. Corn and cotton are most common, but the release of Bt rice, soybeans, canola and some fruits and vegetables is expected soon.

Bt crops, the report says, have many positive effects. Reducing insect damage with insecticidal proteins reduces fungal toxins in the food supply, while better crops improve farmers’ livelihood. Replacing chemical pesticides has reduced toxic hazards to the environment and to farm-workers. Yet concerns related to Bt crops include the potential for harm to organisms other than the insects targeted by Bt, the development of Bt-resistant insects, the possibility of toxicity or allergenic properties in Bt crops or their pollen, and the consequences of gene flow to related wild plants or other organisms.


The report details the issues, assesses current scientific knowledge, and compares Bt technology to alternatives. It presents the conclusions of twenty-five (25) scientists with expertise in plant biology, microbiology, entomology and ecology brought together in November of 2001 for 21/2 days of in-depth discussion of Bt technology and its intended and unintended outcomes. Specific recommendations are made for future research, evaluation and environmental monitoring, scientific coordination and exchange, and public education.


The American Academy of Microbiology is an honorific leadership group within the American Society for Microbiology (ASM) whose mission is to recognize excellence and foster knowledge in the microbiological sciences. Its programs include convening critical issues colloquia and developing consensus-building position papers that provide expert scientific opinion on current and emerging issues in microbiology.

Andrea Lohse | EurekAlert!
Further information:
http://www.asmusa.org/
http://www.asmusa.org/acasrc/pdfs/Btreport.pdf

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>