Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cornell researchers turn conventional thinking about canned corn on its ear

08.08.2002


Canned corn may be healthier for you than corn on the cob, according to a study by Cornell University scientists. The researchers say that heat processing of sweet corn significantly raises the level of naturally occurring compounds that help fight disease.


The findings are reported in the August 14 issue of the Journal of Agricultural and Food Chemistry, a peer-reviewed publication of the American Chemical Society, the world’s largest scientific society.

Sweet corn is the number-two processed vegetable in the United States, second only to tomatoes, according to Rui Hai Liu, M.D., Ph.D., assistant professor of food science at Cornell University and lead author of the paper.

The study shows that heat processing of sweet corn, which is how canned corn is prepared, increases both total antioxidant activity and the level of phenolics -- a naturally occurring type of phytochemical found in many fruits and vegetables. Heating sweet corn, whether it is on the cob, in a casserole, or in the can, enhances its beneficial compounds, Liu noted.



Processing at 115 degrees Celsius for 25 minutes elevated total phenolics by 32 percent, with ferulic acid -- the predominant phenolic compound in sweet corn -- increasing by 550 percent.

"It’s conventional wisdom that processed fruits and vegetables have lower nutritional value than sweet fresh produce," Liu said. This is because processing leads to a decrease in vitamin C -- an antioxidant that prevents cell and tissue damage and purportedly gives fruits and vegetables their disease-preventing abilities.

But Liu’s ongoing investigation of fruits and vegetables contradicts conventional wisdom.

In one study, published two years ago in Nature, Liu and his team found that less than 0.4 percent of an apple’s antioxidant activity comes from vitamin C. Instead, a combination of phytochemicals supplies the antioxidants in apples. This led Liu to suspect that processed fruits and vegetables might actually maintain their antioxidant activity despite the loss of vitamin C.

Earlier this year, in another study published in the Journal of Agricultural and Food Chemistry, the researchers reported more evidence that processing is beneficial. They found that cooking tomatoes triggers a rise in total antioxidant activity, chiefly due to an increase in lycopene -- a phytochemical that makes tomatoes red.

The findings are obviously good for the processing industry, Liu said, but they are also good for the consumer: "It doesn’t matter if it’s raw; it doesn’t matter if it’s cooked; it doesn’t matter if it’s fresh; it doesn’t matter if it’s processed. You simply need to eat a variety of fruits and vegetables to get maximum health benefits."


Liu’s coauthors were Cornell graduate student Veronica Dewanto and a visiting fellow in Liu’s laboratory, Xianzhong Wu. The research was funded by Cornell University and the United States Department of Agriculture’s Federal Formula Fund.

Beverly Hassell | EurekAlert!
Further information:
http://www.acs.org/portal/Chemistry

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>