Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cornell researchers turn conventional thinking about canned corn on its ear


Canned corn may be healthier for you than corn on the cob, according to a study by Cornell University scientists. The researchers say that heat processing of sweet corn significantly raises the level of naturally occurring compounds that help fight disease.

The findings are reported in the August 14 issue of the Journal of Agricultural and Food Chemistry, a peer-reviewed publication of the American Chemical Society, the world’s largest scientific society.

Sweet corn is the number-two processed vegetable in the United States, second only to tomatoes, according to Rui Hai Liu, M.D., Ph.D., assistant professor of food science at Cornell University and lead author of the paper.

The study shows that heat processing of sweet corn, which is how canned corn is prepared, increases both total antioxidant activity and the level of phenolics -- a naturally occurring type of phytochemical found in many fruits and vegetables. Heating sweet corn, whether it is on the cob, in a casserole, or in the can, enhances its beneficial compounds, Liu noted.

Processing at 115 degrees Celsius for 25 minutes elevated total phenolics by 32 percent, with ferulic acid -- the predominant phenolic compound in sweet corn -- increasing by 550 percent.

"It’s conventional wisdom that processed fruits and vegetables have lower nutritional value than sweet fresh produce," Liu said. This is because processing leads to a decrease in vitamin C -- an antioxidant that prevents cell and tissue damage and purportedly gives fruits and vegetables their disease-preventing abilities.

But Liu’s ongoing investigation of fruits and vegetables contradicts conventional wisdom.

In one study, published two years ago in Nature, Liu and his team found that less than 0.4 percent of an apple’s antioxidant activity comes from vitamin C. Instead, a combination of phytochemicals supplies the antioxidants in apples. This led Liu to suspect that processed fruits and vegetables might actually maintain their antioxidant activity despite the loss of vitamin C.

Earlier this year, in another study published in the Journal of Agricultural and Food Chemistry, the researchers reported more evidence that processing is beneficial. They found that cooking tomatoes triggers a rise in total antioxidant activity, chiefly due to an increase in lycopene -- a phytochemical that makes tomatoes red.

The findings are obviously good for the processing industry, Liu said, but they are also good for the consumer: "It doesn’t matter if it’s raw; it doesn’t matter if it’s cooked; it doesn’t matter if it’s fresh; it doesn’t matter if it’s processed. You simply need to eat a variety of fruits and vegetables to get maximum health benefits."

Liu’s coauthors were Cornell graduate student Veronica Dewanto and a visiting fellow in Liu’s laboratory, Xianzhong Wu. The research was funded by Cornell University and the United States Department of Agriculture’s Federal Formula Fund.

Beverly Hassell | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>