Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Karnal bunt struggles to spread without large numbers

05.08.2002


Luckily for us, the economically devastating Karnal bunt fungus needs personal ads and singles bars more than we do.



Airborne spores from the fungus, which damages wheat crops, are limited in how well they can start new infections over long distances, according to the findings from a Kansas State University project.

A phenomenon known as the Allee effect occurs when a small population of a species spread over a large area has little success in reproduction. The reason is that when individuals are dispersed over a wide area, it becomes difficult to find a mate. Like male and female humans, each Karnal bunt spore has something similar to a gender, and must find a spore with a different gender to reproduce. Karnal bunt has a larger spore that can reproduce on its own, but is heavier and less likely to be blown over long distances. It is the bunt’s lighter, airborne spore that needs a mate.


Small populations of the Karnal bunt pathogen are therefore expected to decline, instead of grow.

"If there is an Allee effect, as there is with this fungus, it makes it harder for a population to get over that hump to be a viable population. It makes it harder for the Karnal bunt pathogen to invade," said Karen Garrett, assistant professor of plant pathology at K-State. "With this fungus, the population needs a critical mass to function well."

Garrett is working on the Allee research with Robert Bowden, U.S. Department of Agriculture research plant pathologist. The results of their work will be presented at the Ecological Society of America’s meeting in Tucson, Ariz., Aug. 4 to 9.

The research is good news for farmers in the U.S. Many countries have trade barriers against areas that are infested with Karnal bunt. Some regions in Arizona and Texas, where the pathogen has been found, cannot export wheat to those countries. Such a ban would be devastating in a state like Kansas, where wheat growers heavily depend on exports. Garrett said the results of the study may influence how trade officials in other countries regard the risk of Karnal bunt to their own wheat industry.

"That’s part of why there is so much interest in the invasive potential of this pathogen," Garrett said.

Karnal bunt has little effect on the amount of wheat that a crop can produce, but it does affect its quality. Wheat infected with Karnal bunt tends to have a fishy odor and may have an unpleasant taste.

Garrett and Bowden described the Allee effect for Karnal bunt after running mathematical models. Garrett noted that some aspects of the life cycle of the Karnal bunt pathogen are not well understood, so their results will need to be adjusted as new research becomes available.

"We’re making some assumptions to come up with particular risk estimates, but it is clear that this requirement to find another mating type will reduce the Karnal bunt pathogen’s potential as an invasive species," Garrett said.

Garrett and Bowden received funding for work with plant disease epidemics from the National Science Foundation and the Kansas State Agricultural Experiment Station. Their work will be published in the journal Phytopathology.

Karen Garrett | EurekAlert!
Further information:
http://www.ksu.edu/

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>