Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Karnal bunt struggles to spread without large numbers

05.08.2002


Luckily for us, the economically devastating Karnal bunt fungus needs personal ads and singles bars more than we do.



Airborne spores from the fungus, which damages wheat crops, are limited in how well they can start new infections over long distances, according to the findings from a Kansas State University project.

A phenomenon known as the Allee effect occurs when a small population of a species spread over a large area has little success in reproduction. The reason is that when individuals are dispersed over a wide area, it becomes difficult to find a mate. Like male and female humans, each Karnal bunt spore has something similar to a gender, and must find a spore with a different gender to reproduce. Karnal bunt has a larger spore that can reproduce on its own, but is heavier and less likely to be blown over long distances. It is the bunt’s lighter, airborne spore that needs a mate.


Small populations of the Karnal bunt pathogen are therefore expected to decline, instead of grow.

"If there is an Allee effect, as there is with this fungus, it makes it harder for a population to get over that hump to be a viable population. It makes it harder for the Karnal bunt pathogen to invade," said Karen Garrett, assistant professor of plant pathology at K-State. "With this fungus, the population needs a critical mass to function well."

Garrett is working on the Allee research with Robert Bowden, U.S. Department of Agriculture research plant pathologist. The results of their work will be presented at the Ecological Society of America’s meeting in Tucson, Ariz., Aug. 4 to 9.

The research is good news for farmers in the U.S. Many countries have trade barriers against areas that are infested with Karnal bunt. Some regions in Arizona and Texas, where the pathogen has been found, cannot export wheat to those countries. Such a ban would be devastating in a state like Kansas, where wheat growers heavily depend on exports. Garrett said the results of the study may influence how trade officials in other countries regard the risk of Karnal bunt to their own wheat industry.

"That’s part of why there is so much interest in the invasive potential of this pathogen," Garrett said.

Karnal bunt has little effect on the amount of wheat that a crop can produce, but it does affect its quality. Wheat infected with Karnal bunt tends to have a fishy odor and may have an unpleasant taste.

Garrett and Bowden described the Allee effect for Karnal bunt after running mathematical models. Garrett noted that some aspects of the life cycle of the Karnal bunt pathogen are not well understood, so their results will need to be adjusted as new research becomes available.

"We’re making some assumptions to come up with particular risk estimates, but it is clear that this requirement to find another mating type will reduce the Karnal bunt pathogen’s potential as an invasive species," Garrett said.

Garrett and Bowden received funding for work with plant disease epidemics from the National Science Foundation and the Kansas State Agricultural Experiment Station. Their work will be published in the journal Phytopathology.

Karen Garrett | EurekAlert!
Further information:
http://www.ksu.edu/

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>