Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Miscanthus can meet U.S.Biofuels goal using less land than corn or switchgrass

31.07.2008
In the largest field trial of its kind in the United States, researchers have determined that the giant perennial grass Miscanthus x giganteus outperforms current biofuels sources – by a lot. Using Miscanthus as a feedstock for ethanol production in the U.S. could significantly reduce the acreage dedicated to biofuels while meeting government biofuels production goals, the researchers report.

The new findings, from researchers at the University of Illinois, appear this month in the journal Global Change Biology.

Using corn or switchgrass to produce enough ethanol to offset 20 percent of gasoline use – a current White House goal – would take 25 percent of current U.S. cropland out of food production, the researchers report. Getting the same amount of ethanol from Miscanthus would require only 9.3 percent of current agricultural acreage. View a narrated slideshow about Miscanthus research at http://www.publicaffairs.illinois.edu/slideshows/Miscanthus_Yield/index.html

“What we’ve found with Miscanthus is that the amount of biomass generated each year would allow us to produce about 2 1/2 times the amount of ethanol we can produce per acre of corn,” said crop sciences professor Stephen P. Long, who led the study. Long is the deputy director of the BP-sponsored Energy Biosciences Institute, a multi-year, multi-institutional initiative aimed at finding low-carbon or carbon-neutral alternatives to petroleum-based fuels. Long is an affiliate of the U. of I.’s Institute for Genomic Biology. He also is the editor of Global Change Biology.

In trials across Illinois, switchgrass, a perennial grass which, like Miscanthus, requires fewer chemical and mechanical inputs than corn, produced only about as much ethanol feedstock per acre as corn, Long said.

“It wasn’t that we didn’t know how to grow switchgrass because the yields we obtained were actually equal to the best yields that had been obtained elsewhere with switchgrass,” he said. Corn yields in Illinois are also among the best in the nation.

“One reason why Miscanthus yields more biomass than corn is that it produces green leaves about six weeks earlier in the growing season,” Long said. Miscanthus also stays green until late October in Illinois, while corn leaves wither at the end of August, he said.

The growing season for switchgrass is comparable to that of Miscanthus, but it is not nearly as efficient at converting sunlight to biomass as Miscanthus, Frank Dohleman, a graduate student and co-author on the study, found.

“One of the criticisms of using any biomass as a biofuel source is it has been claimed that plants are not very efficient – about 0.1 percent efficiency of conversion of sunlight into biomass,” Long said. “What we show here is on average Miscanthus is in fact about 1 percent efficient, so about 1 percent of sunlight ends up as biomass.”

“Keep in mind that when we consider our energy use, a few hours of solar energy falling on the earth are equal to all the energy that people use over a whole year, so you don’t really need that high an efficiency to be able to capture that in plant material and make use of it as a biofuel source,” he said.

Field trials also showed that Miscanthus is tolerant of poor soil quality, Long said.

“Our highest productivity is actually occurring in the south, on the poorest soils in the state,” he said. “So that also shows us that this type of crop may be very good for marginal land or land that is not even being used for crop production.”

Because Miscanthus is a perennial grass, it also accumulates much more carbon in the soil than an annual crop such as corn or soybeans, Long said.

“In the context of global change, that’s important because it means that by producing a biofuel on that land you’re taking carbon out of the atmosphere and putting it into the soil.”

Researchers at Illinois are exploring all aspects of biofuels production, from the development of feedstocks such as Miscanthus, to planting, harvest, storage, transport, conversion to biofuels and carbon sequestration.

Using Miscanthus in an agricultural setting has not been without its challenges, Long said. Because it is a sterile hybrid, it must be propagated by planting underground stems, called rhizomes. This was initially a laborious process, Long said, but mechanization allows the team to plant about 15 acres a day. In Europe, where Miscanthus has been grown for more than a decade, patented farm equipment can plant about 50 acres of Miscanthus rhizomes a day, he said.

Once established, Miscanthus returns annually without need for replanting. If harvested in December or January, after nutrients have returned to the soil, it requires little fertilizer.

This sterile form of Miscanthus has not been found to be invasive in Europe or the U.S., Long said.

There are at least a dozen companies building or operating plants in the U.S. to produce ethanol from lignocellulosic feedstocks, the non-edible parts of plants, and companies are propagating Miscanthus rhizomes for commercial sale, Long said.

Although research has led to improvements in productivity and growers are poised to begin using it as a biofuels crop on a large scale, Miscanthus is in its infancy as an agricultural product, Long said.

“Keep in mind that this Miscanthus is completely unimproved, so if we were to do the sorts of things that we’ve managed to do with corn, where we’ve increased its yield threefold over the last 50 years, then it’s not unreal to think that we could use even less than 10 percent of the available agricultural land,” Long said. “And if you can actually grow it on non-cropland that would be even better.”

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Diamond Lenses and Space Lasers at Photonics West

15.12.2017 | Trade Fair News

A better way to weigh millions of solitary stars

15.12.2017 | Physics and Astronomy

New epidemic management system combats monkeypox outbreak in Nigeria

15.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>