Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greatest value of forests is sustainable water supply

16.07.2008
The forests of the future may need to be managed as much for a sustainable supply of clean water as any other goal, researchers say in a new federal report – but even so, forest resources will offer no "quick fix" to the insatiable, often conflicting demands for this precious resource.

This new view of forests is evolving, scientists say, as both urban and agricultural demands for water continue to increase, and the role of clean water from forests becomes better understood as an "ecosystem service" of great value. Many factors – changing climate, wildfires, insect outbreaks, timber harvest, roads, and even urban sprawl – are influencing water supplies from forests.

Preserving and managing forests may help sustain water supplies and water quality from the nation's headwaters in the future, they conclude, but forest management is unlikely to increase water supplies.

"Historically, forest managers have not focused much of their attention on water, and water managers have not focused on forests," said Julia Jones, a professor of geosciences at Oregon State University, and vice chair of a committee of the National Research Council, which today released a report on the hydrologic effects of a changing forest landscape. "But today's water problems demand that these groups work together closely.

"Because forests can release slightly more water for a decade or so following timber harvest, there have been suggestions that forests could be managed to increase water supplies in some areas," Jones said. "But we've learned that such increases don't last very long, and often don't provide water when you need it most."

The science of how forest management affects water quantity and quality, Jones said, has produced a solid foundation of principles. But forests in the United States are changing rapidly, and additional research may reveal ways to provide a sustainable flow of fresh, clean water.

Changes in water supplies from forests due to climate change, the researchers said, are a particular concern, and water supplies may already be affected by increased fire frequency and insect or disease epidemics. Many such factors require more study, they said.

Among the findings of the report:

Forests cover about one-third of the nation's land area, and although they have roles in timber production, habitat, recreation and wilderness, their most important output may be water.

Forests provide natural filtration and storage systems that process nearly two-thirds of the water supply in the U.S.

Demand for water continues to rise due to population growth, while forest acreage is declining and remaining forest lands are threatened by climate change, disease epidemics, fire and global climate change.

Forest vegetation and soils, if healthy and intact, can benefit human water supplies by controlling water yield, peak flows, low flows, sediment levels, water chemistry and quality.

Increases in water yield after forest harvesting are transitory; they decrease over time as forests re-grow, and in the meantime water quality may be reduced.

Impervious surfaces such as roads and road drainage systems increase overland flow, deliver water directly to stream channels, and can increase surface erosion.

Forest chemicals, including those used to fight fire, can adversely affect aquatic ecosystems, especially if they are applied directly to water bodies or wet soil.

One of the biggest threats to forests, and the water that derives from them, is the permanent conversion of forested land to residential, industrial and commercial uses.

The report also outlined a number of research needs for the future, especially to improve specific predictions about the implications of forest harvests, disturbances by fire, insects and disease, climate change, land development, and shifts in forest species composition.

Modern forest practices have helped to protect streams and riparian zones, but more needs to be learned about the implications of such practices as thinning or partial cuts – development of "best management" practices could help balance timber harvest with sustainable water flow and quality.

And global warming, which affects timing and amount of snowmelt runoff, wildfires, and insect and disease outbreaks, is a huge variable.

The study also cited the value of watershed councils and citizen groups in getting more people involved in water, stream and land management issues at a local level, increasing the opportunities for all views to be considered, and conflicts avoided.

Support for this project, which involved numerous representatives from academia and private industry in the U.S. and Canada, was provided by the U.S. Department of the Interior and the Department of Agriculture. The National Research Council is operated by the National Academy of Sciences. This is one of the first major studies on forests and water since a U.S. Forest Service project in 1976, the authors noted.

"Times have changed," the authors wrote in the report. "Thirty years ago, no one would have imagined that clearcutting on public lands in the Pacific Northwest would come to a screeching halt; or that farmers would give up water for endangered fish and birds; or that climate change would produce quantifiable changes in forest structure, species and water supplies."

Those changes demanded a new assessment of current conditions, an understanding of rising tensions, and an evaluation of future needs, the researchers said.

Julia Jones | EurekAlert!
Further information:
http://www.geo.oregonstate.edu

More articles from Agricultural and Forestry Science:

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

nachricht New rice fights off drought
04.04.2017 | RIKEN

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>