Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water: The forgotten crisis

14.07.2008
How do we find more water to feed a growing population?

This year, the world and, in particular, developing countries and the poor have been hit by both food and energy crises. As a consequence, prices for many staple foods have risen by up to 100%. When we examine the causes of the food crisis, a growing population, changes in trade patterns, urbanization, dietary changes, biofuel production, and climate change and regional droughts are all responsible.

Thus we have a classic increase in prices due to high demand and low supply. However, few commentators specifically mention the declining availability of water that is needed to grow irrigated and rainfed crops. According to some, the often mooted solution to the food crisis lies in plant breeding that produces the ultimate high yielding, low water- consuming crops. While this solution is important, it will fail unless attention is paid to where the water for all food, fibre and energy crops is going to come from.

A few years ago, IWMI (the International Water Management Institute) demonstrated that many countries are facing severe water scarcity, either as a result of a lack of available fresh water, or due to a lack of investment in water infrastructure such as dams and reservoirs. What makes matters worse is that this scarcity predominantly affects developing countries where the majority of the world's under-nourished people-- approximately 840 million -- live.

The causes of water scarcity are essentially identical to those of the food crisis. There are serious and extremely worrying factors that indicate water supplies are steadily being used up. Essentially every calorie of food requires a liter of water to produce it. Thus those of us on western diets, use about 2500-3000 liters per day. A further 2.5 billion people by 2030 will mean that we have to find over 2000 more cubic kilometers of fresh water to feed them. This is not any easy task given that current water usage for food production is 7500 cubic kilometers and supplies are scarce. According to the recent report "Water for Food, Water for Life" of the Comprehensive Assessment of Water Management in Agriculture, which drew on the work of 700 scientists, unless we change the way we use water and increase "water productivity" (i.e. more crop per drop) we will not have enough water to feed the world's growing population (This population is estimated to increase from 6 billion now to about 8.5 billion in 25 years.) Compared with the lengthy agenda to combat climate change, this is a very short time indeed and yet the impacts of water scarcity will be profound. However, very little is being done about it in most countries.

Since the formulation of the UN Millennium Goals in 2002, much of the water agenda has been focused around the provision of drinking water and sanitation. This water comes from the same sources as agricultural water and as we urbanize and improve living standards there will be increasing competition for drinking water from domestic and other urban users, putting agriculture under further pressure. While improving drinking water and sanitation is vital with respect to health and living standards, we cannot afford to neglect the provision and improved productivity of water for agriculture.

There are potential solutions. Better water storage has to be considered. Ethiopia, which is typical of many sub-Saharan African countries, has a water storage capacity of 38 cubic meters per person. Australia has almost 5000 cubic meters per person, an amount that in the face of current climate change impacts may be inadequate. While there will be a need for new large and medium-sized dams to deal with this critical lack of storage in Africa, other simpler solutions are also part of the equation. These include the construction of small reservoirs, sustainable use of groundwater systems including artificial groundwater recharge and rainwater harvesting for smallholder vegetable gardens. Improved year- round access to water will help farmers maintain their own food security using simple supplementary irrigation techniques. The redesign of both the physical and institutional arrangements of some large and often dysfunctional irrigation schemes will also bring the required productivity increases. Safe, risk free reuse of wastewater from growing cities will also be needed. Of course these actions need to be paralleled by development of drought- tolerant crops, and the provision of infrastructure and facilities to get fresh food to markets.

Current estimates indicate that we will not have enough water to feed ourselves in 25 years time, by when the current food crisis may turn into a perpetual crisis. Just as in other areas of agricultural research and development, investment in the provision and better management of water resources has declined steadily since the green revolution. I and my water science colleagues are raising a warning flag that significant investment in both R&D and water infrastructure development are needed, if dire consequences are to be avoided.

Dawn Rodriguez | EurekAlert!
Further information:
http://www.cgiar.org
http://www.iwmi.org

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>