Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CO2 increase in the atmosphere augments tolerance of barley to salinity

08.07.2008
In future, climate change will bring an increase in salty surfaces on the Earth and in the concentration of CO2 in the atmosphere. However, this higher CO2 has some positive effects on the physiology of barley plants and increases its tolerance to salinity. This is the conclusion of the PhD thesis of Ms Usue Pérez-López, defended at the University of the Basque Country (UPV/EHU).

Barley is one of the most important crops in the world. In fact 56 million hectares are under barley crops, making it the fourth most grown cereal worldwide. It is widespread over all the Continents, given that it adapts very well in different habitats.

As with other plants, the correct development of barley depends on a suitable balance between the availability of water, nutrients and CO2. Nevertheless, it is predicted that there will be an increase in salinity in the soil in future, causing various imbalances which will result in a reduction in the growth of barley.

According to a number of authors, an increase in the CO2 level in the atmosphere may mitigate this growth decrease of the plants caused by high concentration of salts. However, research to date differs as regards results, and it is not known if the increased levels of CO2 can mitigate the negative effects of salinity on barley. This question was addressed by UPV/EHU teacher, Usue Pérez-López, in her PhD, presented at the University’s Faculty of Science and Technology: Physiological responses of barley to the interaction of salinity and increased CO2. Prospects with climate change.

Ms Pérez-López, a graduate in Biological Sciences with an Extraordinary Degree Award, carried out her work under the direction of doctors Alberto Muñoz-Rueda and Amaia Mena-Petite, from the Department of Plant Biology and Ecology. Dr. Pérez-López developed part of her research at the Department of Chemistry and Agricultural Biotechnology of the University of Pisa (Italy).

Greater rates of salinity and CO2

According to data supplied by the Food and Agriculture Organization of the United Nations (FAO), some 20% of irrigated arable surface area is subject to some level or other of salinisation, thus being hostile terrain for agriculture. Moreover, it is predicted that, in the near future, salinity will increase due to factors such as the expansion of irrigated zones, inefficient irrigation systems, the use of poor quality water and the increase in soil water loss due to greater evaporation as a consequence of high temperatures.

As a result of this increase in salinity the hydric state of barley plants will deteriorate and imbalances in their nutrition will occur due to excess sodium and chlorine (components of salt) and due to lack of potassium, calcium and nitrogen. In essence, the plant will produce less carbohydrates and proteins, which means a reduction in its growth.

The Intergovernmental Panel on Climate Change (IPCC) predicts that the CO2 concentration in the atmosphere at the end of the XXI century will double current levels. An increase contributed to by human activity through the combustion of fossil fuels and the destruction of forests. However, Dr. Pérez-López believes that barley could benefit from this increase, at least as regards mitigating the negative consequences of high salinity. Her research was based on the hypothesis that the greater the concentration of CO2, the higher the rate of photosynthesis, the hydric state of the plant is enhanced due to its lower transpiration (losing less water) and absorbs less toxic ions and is better protected against oxidation.

Dr. Pérez-López selected two varieties of barley (Hordeum vulgare cv Alpha and Hordeum vulgare cv Iranis) and studied their development, their nutritional and hydric states, their antioxidant system and carbon and nitrogen metabolisms, under high salinity and CO2 conditions, both separately and together.

Positive effects of CO2

One of the goals of Dr. Pérez-López’s thesis was to see if the increased CO2 levels would enable less chlorine and sodium to be accumulated in the tissues of the barley plant. After undertaking a study of the various plant organs, she concluded that CO2 does not mitigate the accumulation of sodium in the tissues, despite the plant showing greater growth and less transpiration.

This lower transpiration, cause by the presence of high concentrations of CO2, does attenuate the loss of water through the plant leaves, due to the fact that the stomas are kept closed and the plant tissues are dehydrated to a lesser degree. Moreover, Dr. Pérez-López observed that plants growing under these conditions show greater root development, which augments the surface for water absorption. As a consequence, deducing from Ms Pérez-López’s thesis, high levels of CO2 considerably enhances the hydric state of barley.

Dr. Pérez-López also asked herself if higher concentrations of CO2 in the atmosphere mitigate the reduction in growth caused by salinity. According to her PhD thesis, high concentrations of CO2 have a positive influence on the photosynthesis of the plant because, despite the fact that the plant keeps its stomas shut, the diffusion of CO2 between the exterior and the interior of the leaf is greater.

Finally, Dr. Pérez-López determined the oxidative stress level of the barley (the oxidation suffered by a plant due to high salinity), studied its antioxidant capacity, that is its defence mechanisms. Her conclusion was that high concentrations of CO2 alleviate this stress.

In short, Dr. Pérez-López’s research concludes that the increase in CO2 enables greater growth of barley plants subject to saline conditions, thanks to the improvement in their hydric state and turgescence, but, above all, to the increase in photosynthesis.

Alaitz Ochoa de Eribe | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1819&hizk=I

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Taking screening methods to the next level

17.10.2017 | Life Sciences

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

‘Find the Lady’ in the quantum world

17.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>