Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CO2 increase in the atmosphere augments tolerance of barley to salinity

08.07.2008
In future, climate change will bring an increase in salty surfaces on the Earth and in the concentration of CO2 in the atmosphere. However, this higher CO2 has some positive effects on the physiology of barley plants and increases its tolerance to salinity. This is the conclusion of the PhD thesis of Ms Usue Pérez-López, defended at the University of the Basque Country (UPV/EHU).

Barley is one of the most important crops in the world. In fact 56 million hectares are under barley crops, making it the fourth most grown cereal worldwide. It is widespread over all the Continents, given that it adapts very well in different habitats.

As with other plants, the correct development of barley depends on a suitable balance between the availability of water, nutrients and CO2. Nevertheless, it is predicted that there will be an increase in salinity in the soil in future, causing various imbalances which will result in a reduction in the growth of barley.

According to a number of authors, an increase in the CO2 level in the atmosphere may mitigate this growth decrease of the plants caused by high concentration of salts. However, research to date differs as regards results, and it is not known if the increased levels of CO2 can mitigate the negative effects of salinity on barley. This question was addressed by UPV/EHU teacher, Usue Pérez-López, in her PhD, presented at the University’s Faculty of Science and Technology: Physiological responses of barley to the interaction of salinity and increased CO2. Prospects with climate change.

Ms Pérez-López, a graduate in Biological Sciences with an Extraordinary Degree Award, carried out her work under the direction of doctors Alberto Muñoz-Rueda and Amaia Mena-Petite, from the Department of Plant Biology and Ecology. Dr. Pérez-López developed part of her research at the Department of Chemistry and Agricultural Biotechnology of the University of Pisa (Italy).

Greater rates of salinity and CO2

According to data supplied by the Food and Agriculture Organization of the United Nations (FAO), some 20% of irrigated arable surface area is subject to some level or other of salinisation, thus being hostile terrain for agriculture. Moreover, it is predicted that, in the near future, salinity will increase due to factors such as the expansion of irrigated zones, inefficient irrigation systems, the use of poor quality water and the increase in soil water loss due to greater evaporation as a consequence of high temperatures.

As a result of this increase in salinity the hydric state of barley plants will deteriorate and imbalances in their nutrition will occur due to excess sodium and chlorine (components of salt) and due to lack of potassium, calcium and nitrogen. In essence, the plant will produce less carbohydrates and proteins, which means a reduction in its growth.

The Intergovernmental Panel on Climate Change (IPCC) predicts that the CO2 concentration in the atmosphere at the end of the XXI century will double current levels. An increase contributed to by human activity through the combustion of fossil fuels and the destruction of forests. However, Dr. Pérez-López believes that barley could benefit from this increase, at least as regards mitigating the negative consequences of high salinity. Her research was based on the hypothesis that the greater the concentration of CO2, the higher the rate of photosynthesis, the hydric state of the plant is enhanced due to its lower transpiration (losing less water) and absorbs less toxic ions and is better protected against oxidation.

Dr. Pérez-López selected two varieties of barley (Hordeum vulgare cv Alpha and Hordeum vulgare cv Iranis) and studied their development, their nutritional and hydric states, their antioxidant system and carbon and nitrogen metabolisms, under high salinity and CO2 conditions, both separately and together.

Positive effects of CO2

One of the goals of Dr. Pérez-López’s thesis was to see if the increased CO2 levels would enable less chlorine and sodium to be accumulated in the tissues of the barley plant. After undertaking a study of the various plant organs, she concluded that CO2 does not mitigate the accumulation of sodium in the tissues, despite the plant showing greater growth and less transpiration.

This lower transpiration, cause by the presence of high concentrations of CO2, does attenuate the loss of water through the plant leaves, due to the fact that the stomas are kept closed and the plant tissues are dehydrated to a lesser degree. Moreover, Dr. Pérez-López observed that plants growing under these conditions show greater root development, which augments the surface for water absorption. As a consequence, deducing from Ms Pérez-López’s thesis, high levels of CO2 considerably enhances the hydric state of barley.

Dr. Pérez-López also asked herself if higher concentrations of CO2 in the atmosphere mitigate the reduction in growth caused by salinity. According to her PhD thesis, high concentrations of CO2 have a positive influence on the photosynthesis of the plant because, despite the fact that the plant keeps its stomas shut, the diffusion of CO2 between the exterior and the interior of the leaf is greater.

Finally, Dr. Pérez-López determined the oxidative stress level of the barley (the oxidation suffered by a plant due to high salinity), studied its antioxidant capacity, that is its defence mechanisms. Her conclusion was that high concentrations of CO2 alleviate this stress.

In short, Dr. Pérez-López’s research concludes that the increase in CO2 enables greater growth of barley plants subject to saline conditions, thanks to the improvement in their hydric state and turgescence, but, above all, to the increase in photosynthesis.

Alaitz Ochoa de Eribe | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1819&hizk=I

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>