Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fortified Cassava Could Provide A Day's Nutrition in A Single Meal

02.07.2008
Scientists have determined how to fortify the cassava plant, a staple root crop in many developing countries, with enough vitamins, minerals and protein to provide the poor and malnourished with a day’s worth of nutrition in a single meal.

The researchers have further engineered the cassava plant so it can resist the crop’s most damaging viral threats and are refining methods to reduce cyanogens, substances that yield poisonous cyanide if they are not properly removed from the food before consumption. The reduction of cyanogens also can shorten the time it takes to process the plant into food, which typically requires three to six days to complete.

Studies also are under way to extend the plant’s shelf life so it can be stored or shipped.

The international team of scientists hopes to translate the greenhouse research into a product that can be field tested in at least two African nations by 2010. Funded by more than $12.1 million in grants from the Bill & Melinda Gates Foundation, the group of researchers is led by Richard Sayre, a professor of plant cellular and molecular biology at Ohio State University.

Sayre presented an update on the BioCassava Plus project June 30 at the American Society of Plant Biologists meeting in Mérida, Mexico.

“This is the most ambitious plant genetic engineering project ever attempted,” Sayre said. “Some biofortification strategies have the objective of providing only a third of the daily adult nutrition requirements since consumers typically get the rest of their nutritional requirements from other foods in their diet. But global food prices have recently gone sky high, meaning that many of the poorest people are now eating just one meal a day, primarily their staple food.

“So what we’re working on has become even more important in the last year than it was when we started, not just in regions where people are malnourished, but across developing countries where food has gotten so expensive that people can’t afford the diverse diet that they’re used to.”

Cassava (Manihot esculenta) is the primary source of calories for an estimated 800 million people worldwide, including 250 million people in sub-Saharan Africa, the current focus of the Gates-funded project. But the plentiful crop has several drawbacks. It is composed almost entirely of carbohydrates so it does not provide complete nutrition. The roots can be banked in the ground for up to three years, providing food security, but the plant must undergo time-consuming processing immediately after harvest to remove compounds that generate cyanide. Unprocessed roots also deteriorate within 48 hours after harvest, limiting the food’s shelf life. And a plant disease caused by the geminivirus reduces yields by 30 percent to 50 percent in many areas in sub-Saharan Africa, a major blow to farm productivity.

Sayre and colleagues from multiple institutions set out to tackle virtually all of cassava’s problems to make the plant more nutritious and to increase the crop’s revenue-producing potential for farmers. Sayre reported that the research team has been able to address each of the plant’s deficiencies in individual transgenic plants. The next step will be to combine some or all of the bioengineered traits into a single, farmer-preferred cultivar, with the goal of eventually developing cassava varieties that carry all of the improvements developed by the researchers.

“We’ve begun field trials in Puerto Rico to make sure the plants perform as well outside as they do in greenhouses, and we hope to start field trials in the target countries of Nigeria and Kenya by 2009,” Sayre said.

The labs in the project have used a variety of techniques to improve on the model cassava plant used for the research. They used genes that facilitate mineral transport to produce a cassava root that accumulates more iron and zinc from the soil. To fortify the plants with a form of vitamin E and beta-carotene (also called pro-vitamin A because it converts to vitamin A in the body), the scientists introduced genes into the plant that increase terpenoid and carotenoid production, the precursors for pro-vitamin A and vitamin E. They achieved a 30-fold increase in pro-vitamin A, which is critical for human vision, bone and skin health, metabolism and immune function.

Adding protein to the cassava plant has posed a challenge, Sayre said. The scientists discovered that most of the nitrogen required to make the amino acids used for protein synthesis in roots is derived from the cyanogens that also cause cyanide toxicity. So their strategy for increasing protein levels in roots focuses on accelerating the conversion of cyanide-containing compounds into protein rather than completely eliminating cyanogen production, which would hinder the efforts to increase protein production, Sayre explained. To further address the cyanide problem, the scientists have also developed a way to accelerate the processing methods required to remove cyanide – a days-long combination of peeling, soaking and drying the roots before they are eaten.

To strengthen the cassava plant’s resistance to viruses, the scientists introduced a protein and small interfering RNA molecules that interfere with the viruses’ ability to reproduce.

Prolonging cassava’s shelf life has involved the development of a hybrid species that crosses two related plants native to Texas and Brazil. The strategy, still in development, will combine the properties of these plants and additional genes that function as antioxidants, slowing the rotting process that has been traced to the production of free radicals that damage and kill cells in newly harvested cassava roots.

The first cassava product the team plans to develop for investigations in the field will likely include the virus resistance, elevated protein, elevated beta-carotene (pro-vitamin A) and elevated minerals (iron and zinc), Sayre said.

“These traits have been working the best in the greenhouse, and the virus resistance is critical to success in the field,” he said. “The thinking behind starting with these four traits is driven by science and by the impact they can have.”

The BioCassava Plus project was launched with a $7.5 million grant from the Gates Foundation and recently received an additional $4.6 million in supplemental funding from the foundation to accelerate the application of this research in Africa by African scientists. The supplemental funding will support the training of African scientists so they can produce the transgenic plants in African institutions for use on African farms.

“It will not only be an improved staple crop eaten as a main source of nutrition, but we’re also looking at the transformation of cassava from a staple crop to an income-generating crop,” Sayre said. “That lifts people out of poverty, allows families to send kids to school and build infrastructure in their villages, so this is an important way to cross cultural barriers. There are many different cultures and languages in Africa, but higher crop yield, productivity, longer shelf life and making money are things that everyone understands.”

The BioCassava Plus research team includes Claude Fauquet, Nigel Taylor, Dan Shachtman, Ed Cahoon and Paul Anderson of the Donald Danforth Plant Science Center in St. Louis; Willi Gruissem and Peng Zhang of the Swiss Federal Institute of Technology in Zurich; John Beeching of the University of Bath in England; John Fellman of Washington State University; Martin Fregene and Hernan Ceballos of the International Center for Tropical Agriculture in Colombia; Ivan Ingelbrecht, Alfred Dixon and Bussie Maziya-Dixon of IITA-Nigeria (an African research organization); Caroline Herron of IITA-Kenya; Simon Gichuki of the Kenya Agricultural Research Institute; Ada Mbanaso of the National Root Crops Research Institute in Nigeria; Dimuth Siritunga of the University of Puerto Rico; Mark Manary of Washington University; and independent consultant Jeff Stein. Mary Ann Abiado and Kristen Mosier of Ohio State provide administrative oversight.

Contact: Richard Sayre, (614) 292-9030; Sayre.2@osu.edu (Sayre is traveling through July 6; until then, e-mail is the best way to contact him.)

Emily Caldwell | newswise
Further information:
http://www.osu.edu

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>