Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon Hoofprint: Cows Supplemented with rbST Reduce Agriculture’s Environmental Impact

02.07.2008
Milk goes green: Cows that receive recombinant Bovine Somatotropin (rbST) make more milk, all the while easing natural resource pressure and substantially reducing environmental impact, according to a Cornell University study to be published in the Proceedings of the National Academy of Sciences (June 30, 2008.)

Producing milk uses large quantities of land, energy and feed, but rbST – the first biotech product used on American farms — has been in agricultural use for nearly 15 years. Now it is found to reduce the carbon hoofprint by easing energy, land and nutritional inputs necessary to sustain milk production at levels sufficient to meet demand.

This research found that, compared to a non-supplemented population, giving rbST to one million cows would enable the same amount of milk to be produced using 157,000 fewer cows. The nutrient savings would be 491,000 metric tons of corn, 158,000 metric tons of soybeans, and total feedstuffs would be reduced by 2,300,000 metric tons. Producers could reduce cropland use by 219,000 hectares and reduce 2.3 million tons of soil erosion annually.

In 2007, there were 9.2 million cows in the United States. For every one million cows supplemented with rbST, the world would see an environmental saving of 824 million kilograms of carbon dioxide, 41 million kilograms of methane and 96,000 kilograms of nitrous oxide. For every one million cows supplemented with rbST, the reduction in the carbon footprint is equivalent to removing approximately 400,000 family cars from the road or planting 300 million trees.

“Supplementing cows with rbST on an industry-wide scale would improve sustainability and reduce the dairy industry’s contribution to water acidification, algal growth, and global warming,” says Judith L. Capper, Cornell post-doctoral researcher, and the lead author of “The Environmental Impact of Recombinant Bovine Somatotropin (rbST) Use in Dairy Production,” PNAS.

Joining Capper on the paper: Dale E. Bauman, Cornell professor of animal science and the corresponding author; Euridice Castaneda-Gutierrez, former Cornell post-doctoral researcher; and Roger A. Cady, of Monsanto, St. Louis. Cornell funded the research.

“Sustainability is important in agricultural production, with an emphasis placed upon meeting human food requirements while mitigating environmental impact,” said Bauman. “This study demonstrates that use of rbST markedly improves the efficiency of milk production, mitigates environmental impact including greenhouse gas emissions and reduces natural resource requirements such as fossil fuel, water and land use.”

Blaine Friedlander | newswise
Further information:
http://www.cornell.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>