Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early origins of maize in Mexico

01.07.2008
Paleobotanical evidence pushes back the time of domestication

The ancestors of maize originally grew wild in Mexico and were radically different from the plant that is now one of the most important crops in the world. While the evidence is clear that maize was first domesticated in Mexico, the time and location of the earliest domestication and dispersal events are still in dispute.

Now, in addition to more traditional macrobotanical and archeological remains, scientists are using new genetic and microbotanical techniques to distinguish domesticated maize from its wild relatives as well as to identify ancient sites of maize agriculture. These new analyses suggest that maize may have been domesticated in Mexico as early as 10,000 years ago.

Dr. John Jones and his colleagues, Mary Pohl, and Kevin Pope, have evaluated multiple lines of evidence, including paleobotanical remains such as pollen, phytoliths, and starch grains, as well as genetic analyses, to reconstruct the early history of maize agriculture. Dr. Jones, of the Department of Anthropology, Washington State University, Pullman, will be presenting this work at a symposium on Maize Biology at the annual meeting of the American Society of Plant Biologists in Mérida, Mexico (June 28, 8:30 AM).

While macrobotanical remains such as maize kernels, cobs, and leaves have been found in dry mountain caves, such remains are not preserved in more humid lowland areas, so the conclusions based on such remains are fragmentary. Much smaller parts of the maize plant, like cellular silica deposits, called phytoliths, and pollen and starch grains, are preserved under both humid and dry conditions. These lines of evidence, along with genetic and archeological data, are being used to reconstruct the history of agriculture to its origins around the world.

Maize is wind pollinated and sheds large amounts of pollen, which is deposited in soil and water sediments. The tough outer wall (exine) of pollen protects it from deterioration for thousands of years. While it is possible to distinguish the pollen grains of maize and its close relatives from other grasses, it is more difficult, except at the largest sizes, to differentiate the pollen of maize (Zea mays) from its presumed wild ancestor teosinte (Zea sp). Thus, while pollen can provide evidence of the presence of domesticated maize, along with that from other plants indicating agricultural activity, maize pollen alone is not definitive evidence of domesticated plants.

Phytoliths are another type of plant microfossil that is preserved for thousands of years and can be used to distinguish domesticated from wild maize. These microscopic bodies are silica or calcium oxalate deposits that accumulate in the intercellular spaces of plant stems, leaves, and roots and have characteristic shapes depending on genus and species. They are preserved even when the plant is burned or disintegrated. Scientists have found that it is possible to distinguish the microliths of teosinte from those of maize and other grasses, thus allowing them to identify the approximate dates and locations of early agricultural activity. Phytoliths are also preserved on ceramic and stone artifacts used to process food.

Jones and his co-workers analyzed the sediments from San Andrés, in the state of Tabasco on the Mexican Gulf Coast. Analysis of area sediments revealed phytoliths of domesticated varieties of maize as well as those of agricultural weeds. These data, along with evidence of burning, suggested that agriculturalists were active in that part of the Yucatan Peninsula around 7,000 years ago.

Starch grains are the most recent addition to the archeobotanical toolbox. Maize and its grass relatives produce large quantities of starch grains with unique morphological characteristics and, like phytoliths, are preserved in sediments and on cultural artifacts. Maize produces more starch than its wild relative teosinte, and the grains are much larger. The paleobotanist Dolores Piperno and her colleagues have established a number of criteria for distinguishing the starch grains of different grasses and found that those of maize and teosinte could be reliably separated on the basis of size and other morphological characters.

Maize also has a rich genetic history, which has resulted in thousands of varieties or landraces adapted to different environmental conditions. Maize scientists and geneticists have used this information to track the evolution and dispersal of maize varieties as well as to reconstruct the history of maize domestication. For example, the locus teosinte glume architecture 1 (tga1), is important in determining phytolith formation and morphology and, along with other "domestication genes" can be used to write the history of maize domestication and use by humans.

All of these methods are being used by paleobotanists, plant scientists, and archeologists like Jones and his colleagues, to reconstruct the rich history of maize domestication and evolution. Many of the ancient varieties were adaptations to different environmental conditions such as different soils, temperature, altitude, and drought. Preservation of these varieties and knowledge of their genetic and adaptive histories are of paramount importance as farmers around the world cope with changes in soil, temperature, and water availability and struggle to maintain a food supply for growing populations.

Dr. John Jones | EurekAlert!
Further information:
http://www.wsu.edu

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>