Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient Mexican maize varieties

30.06.2008
Sequencing of ancient corn landraces to ensure genetic diversity and resources
Maize was first domesticated in the highlands of Mexico about 10,000 years ago and is now one of the most important crop plants in the world.

It is a member of the grass family, which also hosts the world's other major crops including rice, wheat, barley, sorghum, and sugar cane. As early agriculturalists selected plants with desirable traits, they were also selecting genes important for transforming a wild grass into a food plant.

Since that time, Mexican farmers have created thousands of varieties suitable for cultivation in the numerous environments in the Mexican landscape—from dry, temperate highlands to moist, tropical lowlands. Because of its importance as food, the need to improve yield, and the challenges presented by changing climate, the maize genome of the B73 cultivar is being sequenced.

However, because maize has a complex genome and many varieties, the genome sequence from just one variety will not be adequate to represent the diversity of maize worldwide. Mexican scientists are also sequencing and analyzing the genomes of the ancient landraces to recapture the full genetic diversity of this complex and adaptable crop.

Dr. Vielle-Calzada and his colleagues, Octavio Martinez de la Vega, Julio Vega-Arrenguin, Gustavo Hernandez-Guzman, Enrique Ibarra-Laclette, Beatriz Jimenez-Moraila, Guilermo Corona-Armenta, Cesar Alvarez-Mejia, Araceli Fernandez-Cortes, Gustavo de la Riva, Alfredo Herrera-Estrella, and Luis Herrera-Estrella, are in the process of sequencing one of the ancient popcorn races, Palomero, and analyzing its molecular and functional diversity relative to other maize races.

Dr. Vielle-Calzada, of the National Laboratory of Genomics for Biodiversity, Cinvestav, Mexico, will be presenting this work at a symposium on Maize Biology at the annual meeting of the American Society of Plant Biologists in Mérida, Mexico (June 28, 11:30 AM).

Like other varieties of maize, the popcorn landraces are used throughout the world. Archeological evidence traces the earliest popcorn in the USA to New Mexico, suggesting an overland dispersal from the highlands of central Mexico into the northern plains of Mexico and then into the southwestern USA. Recent studies also support the hypothesis that popcorns are some of the oldest races of maize and group closely with teosinte in phylogenetic analyses.

Palomero is an ancient popcorn landrace of the Central and Northern Highlands Group. Vielle-Calzada and his colleagues estimated that its genome is about 22% smaller than that of B73. Their structural and functional analysis of this genome reveals a large number of unreported sequences, suggesting that the ancient landraces contain a large pool of unexplored genetic diversity that could be useful in new crop generation as well as the study of the evolution and domestication of maize and other cereals. Other studies in Mexico and elsewhere have shown that Mexican maize varieties are extraordinarily diverse.

Maize is a good model plant for studying the development of cereal crops because of its complex genome, numerous developmental mutants, and thousands of varieties. It is thought that as many as 1200 genes were selected in the process of transforming maize into a versatile food plant, and the process continues today. In regions throughout Mexico, farmers still cultivate local or criollo maize varieties in traditional ways as well as generating new varieties. They are thus contributing to conservation of the genetic diversity of maize and preserving traits that could be useful in yet unforeseen circumstances.

Many of the ancient varieties like Palomero were adaptations to different environmental conditions such as different soils, temperature, altitude, and drought. Preservation of these varieties and knowledge of their genetic and adaptive histories are of paramount importance as farmers around the world cope with changes in temperature and water availability and struggle to maintain a food supply for growing populations. These sequencing efforts are providing the data for genomic and mutant analyses that are needed for the genetic engineering of crops to improve yield as well as resistance to pests and tolerance for difficult growing conditions. The knowledge gained from these efforts can also be applied in crop and yield improvement efforts for other cereals.

Dr. Jean-Philippe Vielle-Calzada | EurekAlert!
Further information:
http://www.ira.cinvestav.mx

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>