Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Desert plant may hold key to surviving food shortage

20.06.2008
Scientists at the University of Liverpool are investigating how a Madagascan plant could be used to help produce crops in harsh environmental conditions.

The plant, Kalanchoe fedtschenkoi, is unique because, unlike normal plants, it captures most of its carbon dioxide at night when the air is cooler and more humid, making it 10 times more water-efficient than major crops such as wheat. Scientists will use the latest next-generation DNA sequencing to analyse the plant’s genetic code and understand how these plants function at night.

The project will generate a genome sequence database that will be used as an Internet resource for plant biologists throughout the world.

The research comes at a time when farmland across the globe normally used for growing food such as rice and wheat is being taken over by bio-fuel crops used for bioethanol production as a petrol substitute. Scientists believe that the novel genes found in Kalanchoe could provide a model of how bio-fuel plants could be grown on un-utilised desert and semi-arid lands, rather than on fertile farmland needed for producing food.

Biological scientist, Dr James Hartwell, said: “There is a lot of concern over food shortage at the moment, with more farmland being commandeered for bio-fuels. As a result of changes in our climate the Intergovernmental Panel on Climate Change has predicted a large expansion of arid regions so there is an increasing need for new crop varieties that can be productive in deserts.

“Kalanchoe is a good example of how plants can flourish in harsh environments. If we can understand how it is able to photosynthesise using much less water than current crops, we may be able to use its genetic code to develop a crop able to withstand harsh environmental conditions. It is essential that farmland be returned to food production.”

The genetic code of the plant will be deciphered using a DNA sequencing machine that uses an enzyme found in fireflies as a flash light to help read the DNA strand.

Liverpool is one of only two universities in the UK with the technology, which can read up to half a billion DNA letters in a few hours compared to more widely used technology that can only process 50,000.

The project is funded by the Biotechnology and Biological Sciences Research Council (BBSRC).

Charlotte Roberts | alfa
Further information:
http://www.liv.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>