Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new satellite remote sensing tool for improving agricultural land use observation

04.06.2008
FAO (Food and Agriculture Organization of the United Nations) data indicate that annually 2500 km3 of freshwater are used for agricultural production, which amounts to 70% of the water resources the whole of humanity consumes in a year.

With the global population continuing to grow at a high pace, it is essential to optimize the use of water resources and to increase agricultural production in view of the prospect of having to feed 8 billion humans in 2030. Scientists have for many years been using remote-sensing satellite observations to improve water balance and farming yield assessment on large geographical scales (at the level of irrigated agriculture areas, catchment basins and so on).

Until quite recently, scientists had two different observation methods available for doing that: wide field-of-view sensors (TERRA-MODIS or SPOT-VEGETATION), which allowed daily observation of the entire globe but with a resolution on the kilometric scale, generally extending far over that of one parcel of crops, or decametre-scale-resolution sensors (SPOT, Landsat, ASTER), which can yield only one or two observations per month.

Since 2004, the Taiwanese satellite FORMOSTAT-2 has been in operation, combining the functional features of these two observation techniques, albeit without providing an exhaustive cover of the continents. It gives the possibility for daily observation of small areas of around 500 km² at a spatial resolution of about 8 metres.

Research conducted by an IRD team at the ‘Centre d’Etudes Spatiales de la Biosphère’ at Toulouse, using images taken by FORMOSAT-2, gave the opportunity to study two agricultural areas where farmers make extensive use of irrigation: the Tensift Plain around Marrakech in the centre of Morocco, and the Yaqui Valley in the State of Sonora in North-West Mexico. In these agricultural areas, irrigated cultivation of cereals, fruit trees and vegetables is practised over several thousand square kilometres.

This activity draws on limited water resources, mainly coming from precipitation received by the nearby mountain ranges: the Moroccan High-Atlas in the case of the Tensift Plain, the western Sierra Madre for the Yaqui Valley. Both regions have an arid climate: average rainfall is 200 mm per year. But the water demand is seven times as high (the potential evapotranspiration of the plant cover is about 1500 mm/year). It is therefore essential to portion off the water as equitably as possible, according to the needs of the different types of crops that make up the agricultural landscape.

For these two areas, the study demonstrated all the potential capabilities of the new imagery technique with its high spatio-temporal resolution. With the support of CNES, the satellite FORMOSAT-2 was used to obtain time series of images, from November to May of the following year, that is throughout one entire farming season, at the rate of one shot every 5 days. Processing of the resulting satellite data first helped compile land use maps (including crop rotation and succession patterns) with an excellent degree of discrimination between the different crop types.

The availability of a large set of observations also allowed detailed monitoring of the plant cover with time, achieved by determination of changes in reflectance, the proportion of the light reflected by the land surface. These measurements and associated vegetation indices gave the bases for determining the variables that describe the state of the soil-plant system such as the degree of land plant cover or the green leaf area index: a reliable index for vegetation, a figure below 0.15 corresponding to bare soil whereas one of over 0.70 characterizes a crop that is on the point of ripening (see the series of satellite images).

This detailed and practically continuous description of the plant cover made it possible to improve yield assessments and modelling of water transfer between soil, vegetation and atmosphere. The investigations run in Morocco on parcels of wheat in particular showed that evapotranspiration from the plant cover, the principal factor in water loss, could be evaluated with a margin of error of between 10 and 20%. Moreover, the plant biomass (dry above-ground phytomass) and grain yields could be estimated to an accuracy of about 25% at parcel scale.

In conclusion, this observation technique opens up the possibility to track the various successive operations (sowing, ploughing, irrigation, harvest and so on) effected as an agricultural season progresses. Making sets of such data available for local agencies responsible for agro-environmental management should facilitate the reorientation of irrigation rapidly towards the crop parcels where it is most needed. In addition, it also makes it possible to adapt and improve all the information and advice issued to farmers and thus enable them to make significant improvements to their cultivation practices.

Grégory Fléchet – DIC

1. This research work was conducted as part of the SudMed and MedMex programmes (IRD-CESBIO, Toulouse), in conjunction with the Faculté des Sciences Semlalia of Marrakech, the Office Régional de Mise en Valeur Agricole of Haouz (Morocco) and the University and Technological Institute of Sonora (Mexico). It was financed by the European Commission, Coopération Universitaire Franco-Marocaine and French national space research programmes (INSU and CNES). The FORMOSAT-2 image series were made available by the NSPO and processed in the framework of an agreement between the CNES, the NSPO and SPOT-IMAGE.

Grégory Fléchet | alfa
Further information:
http://www.ird.fr/us/actualites/fiches/2008/fas297.pf

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>