Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new satellite remote sensing tool for improving agricultural land use observation

04.06.2008
FAO (Food and Agriculture Organization of the United Nations) data indicate that annually 2500 km3 of freshwater are used for agricultural production, which amounts to 70% of the water resources the whole of humanity consumes in a year.

With the global population continuing to grow at a high pace, it is essential to optimize the use of water resources and to increase agricultural production in view of the prospect of having to feed 8 billion humans in 2030. Scientists have for many years been using remote-sensing satellite observations to improve water balance and farming yield assessment on large geographical scales (at the level of irrigated agriculture areas, catchment basins and so on).

Until quite recently, scientists had two different observation methods available for doing that: wide field-of-view sensors (TERRA-MODIS or SPOT-VEGETATION), which allowed daily observation of the entire globe but with a resolution on the kilometric scale, generally extending far over that of one parcel of crops, or decametre-scale-resolution sensors (SPOT, Landsat, ASTER), which can yield only one or two observations per month.

Since 2004, the Taiwanese satellite FORMOSTAT-2 has been in operation, combining the functional features of these two observation techniques, albeit without providing an exhaustive cover of the continents. It gives the possibility for daily observation of small areas of around 500 km² at a spatial resolution of about 8 metres.

Research conducted by an IRD team at the ‘Centre d’Etudes Spatiales de la Biosphère’ at Toulouse, using images taken by FORMOSAT-2, gave the opportunity to study two agricultural areas where farmers make extensive use of irrigation: the Tensift Plain around Marrakech in the centre of Morocco, and the Yaqui Valley in the State of Sonora in North-West Mexico. In these agricultural areas, irrigated cultivation of cereals, fruit trees and vegetables is practised over several thousand square kilometres.

This activity draws on limited water resources, mainly coming from precipitation received by the nearby mountain ranges: the Moroccan High-Atlas in the case of the Tensift Plain, the western Sierra Madre for the Yaqui Valley. Both regions have an arid climate: average rainfall is 200 mm per year. But the water demand is seven times as high (the potential evapotranspiration of the plant cover is about 1500 mm/year). It is therefore essential to portion off the water as equitably as possible, according to the needs of the different types of crops that make up the agricultural landscape.

For these two areas, the study demonstrated all the potential capabilities of the new imagery technique with its high spatio-temporal resolution. With the support of CNES, the satellite FORMOSAT-2 was used to obtain time series of images, from November to May of the following year, that is throughout one entire farming season, at the rate of one shot every 5 days. Processing of the resulting satellite data first helped compile land use maps (including crop rotation and succession patterns) with an excellent degree of discrimination between the different crop types.

The availability of a large set of observations also allowed detailed monitoring of the plant cover with time, achieved by determination of changes in reflectance, the proportion of the light reflected by the land surface. These measurements and associated vegetation indices gave the bases for determining the variables that describe the state of the soil-plant system such as the degree of land plant cover or the green leaf area index: a reliable index for vegetation, a figure below 0.15 corresponding to bare soil whereas one of over 0.70 characterizes a crop that is on the point of ripening (see the series of satellite images).

This detailed and practically continuous description of the plant cover made it possible to improve yield assessments and modelling of water transfer between soil, vegetation and atmosphere. The investigations run in Morocco on parcels of wheat in particular showed that evapotranspiration from the plant cover, the principal factor in water loss, could be evaluated with a margin of error of between 10 and 20%. Moreover, the plant biomass (dry above-ground phytomass) and grain yields could be estimated to an accuracy of about 25% at parcel scale.

In conclusion, this observation technique opens up the possibility to track the various successive operations (sowing, ploughing, irrigation, harvest and so on) effected as an agricultural season progresses. Making sets of such data available for local agencies responsible for agro-environmental management should facilitate the reorientation of irrigation rapidly towards the crop parcels where it is most needed. In addition, it also makes it possible to adapt and improve all the information and advice issued to farmers and thus enable them to make significant improvements to their cultivation practices.

Grégory Fléchet – DIC

1. This research work was conducted as part of the SudMed and MedMex programmes (IRD-CESBIO, Toulouse), in conjunction with the Faculté des Sciences Semlalia of Marrakech, the Office Régional de Mise en Valeur Agricole of Haouz (Morocco) and the University and Technological Institute of Sonora (Mexico). It was financed by the European Commission, Coopération Universitaire Franco-Marocaine and French national space research programmes (INSU and CNES). The FORMOSAT-2 image series were made available by the NSPO and processed in the framework of an agreement between the CNES, the NSPO and SPOT-IMAGE.

Grégory Fléchet | alfa
Further information:
http://www.ird.fr/us/actualites/fiches/2008/fas297.pf

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>