Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lower Crop Yields Due to Ozone a Factor in World Food Crisis

04.06.2008
Rising background levels of ozone in the atmosphere are a likely contributor to the global food crisis, since ozone has been shown to damage plants and reduce yields of important crop, including soybeans and wheat.

Heat waves, droughts and fuel prices are just a few reasons for the current global food crisis that is making headlines around the world. Research by William Manning of the University of Massachusetts Amherst indicates that rising background levels of ozone in the atmosphere are a likely contributor to the problem, lowering the yield of important food crops, such as wheat and soybeans.

“Plants are much more sensitive to ozone than people, and a slight increase in exposure can have a large impact on their productivity,” says Manning, a professor of plant, soil and insect sciences. “The new ozone standard set by the U.S. EPA in March 2008 is based on protecting human health, and may not be strict enough to protect plants.” Manning served on the Clean Air Science Advisory Committee for the EPA in 1997 when the previous air quality standard for ozone was developed.

According to Manning, emission controls on cars have been successful in reducing short periods of high ozone levels called peaks, but average concentrations of ozone in the atmosphere throughout the year, called the background level, is increasing as polluted air masses from Asia travel to the U. S. and then on to Europe. Background levels are now between 20 and 45 parts per billion in Europe and the United States, and are expected to increase to between 42 and 84 parts per billion by 2100.

Manning was recently part of a team of researchers studying how ozone levels in the Yangtze Delta affect the growth of oilseed rape, a member of the cabbage family that produces one-third of the vegetable oil used in China. By growing the plants in chambers that controlled the ozone environment, the team showed that exposure to elevated ozone reduced the size and weight, or biomass, of the plants by 10 to 20 percent. Production of seeds and oil was also reduced. Results of the study are scheduled for publication in Environmental Pollution.

“What was surprising about this research was that plants exposed to ozone levels that peaked in the late afternoon suffered more damage than plants exposed to a steady ozone concentration throughout the day, even though average ozone concentrations were the same for both groups,” says Manning. “This shows that current ozone standards that rely on average concentrations would underestimate crop losses.”

Additional research in the Yangtze Valley, which accounts for nearly half of China’s crop production, showed that wheat was more sensitive to ozone than rice. “Plants vary widely in their sensitivity to ozone, and varieties of the same species can react differently,” says Manning. “Some of the most sensitive plant species are from the legume and cabbage families, which include radishes, broccoli and soybeans.”

Plants can limit ozone damage for short periods of time by reducing the size of pores on their leaves called stomata. This reduces the uptake of ozone, but also carbon dioxide, which is used as the plants make food through the process of photosynthesis. Chronic exposure results in reduced photosynthesis, plant growth and yields. In the long term, leaf injury occurs when the amount of ozone taken in exceeds the leaf’s capacity to provide antioxidants to counter its effects.

This summer, Manning will be investigating the effects of ozone on a variety of plants in the Pioneer Valley of Massachusetts, where ozone levels are often above the EPA standard as pollution from New York City and Washington, D.C. moves northward during the day. Plants will be grown in open fields, and some will be treated with a compound that blocks the effects of ozone. If the treated plants are healthier than the untreated group, then ozone will be the cause.

William J. Manning | newswise
Further information:
http://www.microbio.umass.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>