Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists back the use of maize as an efficient ‘factory’ for protein-based pharmaceutical products

26.05.2008
Scientists from the Universidad de Lleida (University of Lleida) have published a study confirming that maize seeds are an effective and sure platform within molecular agriculture to alleviate diseases.

Over the next few years AIDS could be one of the first diseases to benefit from these results, although regulations for this technology are being developed at the same time as research is being undertaken.

Maize, the third most important cereal in the world, has a great number of advantages for molecular agriculture. Among these are its physiology, its capacity to express recombinant proteins in the seeds, its widespread cultivation and its genetic diversity, as well as being anti-allergenic and non-toxic.

Last March, transgenic maize became the first plant to be developed commercially for medical use. The PNAS review published the following findings: a maize seed with genes from the 2G12 antibody (already known for its capacity to neutralise infection from the virus) could produce antibodies against the transmission of HIV. Researchers from the Departamento de Producción Vegetal y Ciencia Forestal [Department of Plant Production and Forest Science] at the Universidad de Lleida, were those who actually designed this drug during an international project known as Pharma-Planta (made up of 39 European and South African teams), and headed by the British man Paul Christou.

Currently, the same team of scientists from the Universidad de Lleida who took part in this research have put forward in the review Plant Science “a more practical and productive approach to evaluate the ecological and toxicological risks, in which a scientific problem refers to a significant, final evaluation, and the hypotheses of risk predict effects in which the final evaluation is not a transformed plant, but the product resulting from that plant”, Paul Christou explains to SINC.

According to the researchers, the use and genetic modification of plants for the production of protein-based drugs is useful for the treatment, prevention and early detection of human and animal diseases, as well as for the production of vaccines against tuberculosis, diabetes and rabies. Paul Christou states that “In the last two decades, plants have been shown to be an excellent alternative for the production of medicines in laboratory research”.

Until now, conventional methods using microbial systems and animals have been used in the production of drugs and involve high costs and limits in terms of safety and stability. Amongst other things, excessively high prices prevent the people in most need from accessing pharmaceutical drugs, as the study shows. “Plants offer a solution to the problem because pharmacological production using maize is cheaper”, Paul Christou points out to SINC. Paul Christou is also a member of the European Union Expert Committee on Food Safety.

In addition to the price, the proteins produced in maize seeds can remain intact for many years without the need for refrigeration, thus enabling vaccines to be delivered to countries such as those situated in the Tropics and Sub-Saharan Africa.

Risks that plants can present

The risks of the open farming of plants for the production of molecules for pharmaceutical use relate to their impact on the environment through the gene flow, and their impact on the health of animals and humans through inadvertently consuming these. The research team has decided that the regulation processes “should be applied in proportion to the risks of each individual case”, as some plants farmed for the production of pharmaceutical drugs are harmless and others vary in their toxicity. In every case a level of risk acceptance has to be established in order to avoid the consequences of any possible exposure.

Paul Christou points out that “the gene flow per se should not be considered “bad” for the environment”. He asserts that should this be developed on a commercial basis (anticipated within the next five years), all pharmacological production of maize will be undertaken in specialised locations, “where any risk of gene flow will be unlikely”.

SINC Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>