Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dosage of fertiliser helps to enhance quality of wheat

19.05.2008
Breaking up the dosage of fertilizer into three phases of application enhances the quality of wheat and limits its negative effects on the environment. This is the conclusion of the PhD thesis of University of the Basque Country (UPV-EHU) researcher, Teresa Fuentes Mendizábal, presented at the Faculty of Science and Technology.

Wheat yields have increased over the decades, more concretely during the second half of the XX century when grain production per unit area doubled. This increase was boosted by genetic improvements in the crop, as well as by better agricultural practices amongst which is the use of nitrogenated fertilizers which has enabled enhancement not only in crop yield but also in the end quality of the wheat.

Nevertheless, the use of nitrogenated fertilizers has had negative consequences for the environment, as plants only manage to incorporate about half of this substance, the rest filtering to subterranean waterbeds in the form of nitrates and which can be toxic for human consumption; or otherwise it is freed into the atmosphere in the form nitrogenated gases, such as ammonia.

Within this context, farmers are obliged to combine a number of different objectives: maximise crop yield, limit production costs and do this reducing the negative impact on the environment. Besides, the quality of the wheat obtained has to comply with market demands. In the case of flour wheat, employed in bread making, the quality is determined by its genetic configuration and the extant climatic conditions, although research undertaken to date reveal that a judicious handling/dosage of nitrogenated fertilizers has a positive influence on the quality of the grain.

In her PhD, entitled Physiology of wheat crop and grain quality under different regimes of nitrogenated fertilizers, UPV/EHU researcher, Teresa Fuertes Mendizábal, analysed the behaviour of wheat with different uses of nitrogenated fertiliser, with the goal of establishing suitable guidelines for application – optimum dosage, number of applications and so on. Ms. Fuertes is a graduate in Biological Sciences and has an advanced studies diploma in Environmental Agricultural Biology. She is currently contracted as a researcher at the Department of Plant and Ecological Biology of the Faculty of Science and Technology (UPV/EHU). Her PhD was led by Ms María Begoña González Moro and Mr José María Estavillo and undertaken in collaboration with the Public University of Navarre and the NEIKER-Tecnalia Institute.

Seeking the correct dosage

One of the aims of the UPV/EHU research was to better understand the physiological response of the wheat crop to nitrogen. By means of a field study in the Basque province of Araba, carried out with a wide-ranging variety of flour wheat – known as Soissons -, Dr Fuertes studied the physiological processes involved in the efficient use of nitrogen by the plant. According to her conclusions, applying an insufficient dosage of fertiliser will result in scant yields in terms of volume of production, while excessive dosage will cause environmental problems without achieving appreciable improvement in the quality of the grain. For Dr Fuertes, drawing up the procedures or protocols for the application of nitrogenated fertilisers should take into account the source of the nitrogen, the quantity to be applied and the distribution of the dosage, i.e. in how many stages should this amount be applied.

Less fertiliser, but better dosage

The PhD thesis of Ms Fuertes revealed that the optimum dosage enabling the maximum yield for wheat crop, in the climatic conditions extant in Araba, is about 155 kg of nitrogen per hectare. She also pointed out that dosages of 100 kg or less per hectare produce flours that are insufficient for bread making, while 140 kg per hectare produces mediocre flours, but 180 kg per hectare produces flours with good bread making properties.

Moreover, according to the research, the distributing the fertiliser dosage in three stages (instead of two) not only enables the attenuation of nitrogen losses by filtering to subterranean waterbeds and emission of gas, but also the beneficial effects are such that they confirm that lesser dosage, better distributed over time, can improve the quality of the grain. For example, a dosage of 140 kg of nitrogen per hectare distributed in three applications achieves the same quality of flour as the application of 180 kg per hectare in two stages.

The UPV/EHU researcher has also studied at depth the influence of nitrogenated fertilisation on the proteic composition of the grain, arriving at the conclusion that it has a positive effect on the indices of quality. According to Ms Fuertes, increasing the dosage of fertiliser or distributing it better produces stronger and more balanced flours, i.e. ones that are more suitable for the bread making industry.

Finally, the monitoring of data from crop tests in containers has been initiated and in which, apart from simulating conditions in the field, it has been possible to collect samples of the plant roots, something unviable in the field itself.

Alaitz Ochoa de Eribe | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1750&hizk=I

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>