Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dosage of fertiliser helps to enhance quality of wheat

19.05.2008
Breaking up the dosage of fertilizer into three phases of application enhances the quality of wheat and limits its negative effects on the environment. This is the conclusion of the PhD thesis of University of the Basque Country (UPV-EHU) researcher, Teresa Fuentes Mendizábal, presented at the Faculty of Science and Technology.

Wheat yields have increased over the decades, more concretely during the second half of the XX century when grain production per unit area doubled. This increase was boosted by genetic improvements in the crop, as well as by better agricultural practices amongst which is the use of nitrogenated fertilizers which has enabled enhancement not only in crop yield but also in the end quality of the wheat.

Nevertheless, the use of nitrogenated fertilizers has had negative consequences for the environment, as plants only manage to incorporate about half of this substance, the rest filtering to subterranean waterbeds in the form of nitrates and which can be toxic for human consumption; or otherwise it is freed into the atmosphere in the form nitrogenated gases, such as ammonia.

Within this context, farmers are obliged to combine a number of different objectives: maximise crop yield, limit production costs and do this reducing the negative impact on the environment. Besides, the quality of the wheat obtained has to comply with market demands. In the case of flour wheat, employed in bread making, the quality is determined by its genetic configuration and the extant climatic conditions, although research undertaken to date reveal that a judicious handling/dosage of nitrogenated fertilizers has a positive influence on the quality of the grain.

In her PhD, entitled Physiology of wheat crop and grain quality under different regimes of nitrogenated fertilizers, UPV/EHU researcher, Teresa Fuertes Mendizábal, analysed the behaviour of wheat with different uses of nitrogenated fertiliser, with the goal of establishing suitable guidelines for application – optimum dosage, number of applications and so on. Ms. Fuertes is a graduate in Biological Sciences and has an advanced studies diploma in Environmental Agricultural Biology. She is currently contracted as a researcher at the Department of Plant and Ecological Biology of the Faculty of Science and Technology (UPV/EHU). Her PhD was led by Ms María Begoña González Moro and Mr José María Estavillo and undertaken in collaboration with the Public University of Navarre and the NEIKER-Tecnalia Institute.

Seeking the correct dosage

One of the aims of the UPV/EHU research was to better understand the physiological response of the wheat crop to nitrogen. By means of a field study in the Basque province of Araba, carried out with a wide-ranging variety of flour wheat – known as Soissons -, Dr Fuertes studied the physiological processes involved in the efficient use of nitrogen by the plant. According to her conclusions, applying an insufficient dosage of fertiliser will result in scant yields in terms of volume of production, while excessive dosage will cause environmental problems without achieving appreciable improvement in the quality of the grain. For Dr Fuertes, drawing up the procedures or protocols for the application of nitrogenated fertilisers should take into account the source of the nitrogen, the quantity to be applied and the distribution of the dosage, i.e. in how many stages should this amount be applied.

Less fertiliser, but better dosage

The PhD thesis of Ms Fuertes revealed that the optimum dosage enabling the maximum yield for wheat crop, in the climatic conditions extant in Araba, is about 155 kg of nitrogen per hectare. She also pointed out that dosages of 100 kg or less per hectare produce flours that are insufficient for bread making, while 140 kg per hectare produces mediocre flours, but 180 kg per hectare produces flours with good bread making properties.

Moreover, according to the research, the distributing the fertiliser dosage in three stages (instead of two) not only enables the attenuation of nitrogen losses by filtering to subterranean waterbeds and emission of gas, but also the beneficial effects are such that they confirm that lesser dosage, better distributed over time, can improve the quality of the grain. For example, a dosage of 140 kg of nitrogen per hectare distributed in three applications achieves the same quality of flour as the application of 180 kg per hectare in two stages.

The UPV/EHU researcher has also studied at depth the influence of nitrogenated fertilisation on the proteic composition of the grain, arriving at the conclusion that it has a positive effect on the indices of quality. According to Ms Fuertes, increasing the dosage of fertiliser or distributing it better produces stronger and more balanced flours, i.e. ones that are more suitable for the bread making industry.

Finally, the monitoring of data from crop tests in containers has been initiated and in which, apart from simulating conditions in the field, it has been possible to collect samples of the plant roots, something unviable in the field itself.

Alaitz Ochoa de Eribe | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1750&hizk=I

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>