Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Efficient plastic nuggets key to agricultural plastic waste disposal

01.07.2002


A process that would be a plastics recycler’s nightmare may help farmers deal with the disposal of agricultural and domestic plastics by creating burnable, energy-efficient plastic nuggets, according to a Penn State agricultural engineer.



"In plastics recycling there are two unbreakable rules," says James W. Garthe, instructor in agricultural engineering and cooperative extension specialist. "You cannot mix types of plastic, and the plastics must be clean. This process does both since mixed plastics burn just fine and the dirt and debris come out with the coal ash anyway."

Agricultural plastics, such as mulch films, greenhouse films and pots, flats and silage wraps are universally dirty, and the cost of cleaning them before recycling would be expensive. Also, while mulch and greenhouse films are generally low-density polyethylene, nursery pots are polypropylene and soda bottles and milk jugs are polyethylene terephthalate and high-density polyethylene respectively. The plastics found on farms, nurseries and landscape yards are a variety of plastics that would never be mixed in conventional recycling.


Garthe’s unconventional approach is to convert the various film and solid plastics into a plastic nugget that can be burned with coal in coal fired boilers, refuse-derived fuel burners and even cement kilns. The process can mix plastic types, because it does not melt the plastic. Only the outer portion of the nugget is fused forming a melted jacket that contains the compressed plastic waste.

"Because the plastic is not completely melted, calculations show that only about one eighty-fifth of the energy released when the plastic nuggets burn is used to create the nugget," says Garthe. "Even if these plastics could be remelted and remolded, which they cannot, conventional recycling requires much higher energy input."

Including the energy required to preprocess the plastic and to cut the pieces in the calculations; the nuggets still supply 20 times the energy used to make them, according to Garthe.

Preprocessing for the prototype plant is currently done by cutting up the plastics and hand feeding them into the hopper where a feed rod pushes them into the die. The die is heated to melt the outer layer and a snake of compacted, but mostly unmelted plastic emerges. For the prototype, Garthe cuts the snakes into nuggets with a hot knife. Conveyers, a way to produce the proper-size plastic pieces, and automatic cutting of the nuggets will eventually be incorporated into the system.

"The system can be made small enough to be bench scale, but could also be enlarged to industrial scale," says the Penn State researcher.

While dirty and mixed plastics can be used, wet plastics might pose a problem for the system so some type of quality control would be necessary. Also, sandy plastics might cause a problem because the silicate sands might fuse onto the grates.

"We probably will not use polyvinyl chlorides, like PVC pipe or collapsible irrigation tube in the process because of the potential for emissions problems," says Garthe.

Burning the nuggets along with coal probably produces few emissions as the temperatures of 1,500 to 2,000 degrees Fahrenheit allow for more complete combustion. Plastics simply burned in a burn barrel reach only 400 to 700 degrees Fahrenheit and this incomplete combustion can produce unwanted emissions. Although Garthe believes that emissions are not a problem for the nuggets, Penn State’s Energy Institute is currently running tests on the nuggets to characterize the emissions. A grant from the National Watermelon Promotion Board, U.S. Department of Agriculture, supports these tests.

Currently, besides the small amount of plastic bottles and jugs that are recycled, most other plastic wastes end up being land-filled, where the energy potential of the plastic as a fuel is wasted. Nurserymen, landscapers, truck farmers, mushroom growers, hothouse owners and even dairy farmers produce varying amounts of plastic waste.

"Depending on the type of agricultural operation, the generation of plastic waste probably ranges from 10 pounds to 10,000 pounds a year," says Garthe.

The Penn State agricultural engineer has applied for a provisional patent on this process.

Andrea Elyse Messer | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>