Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Efficient plastic nuggets key to agricultural plastic waste disposal

01.07.2002


A process that would be a plastics recycler’s nightmare may help farmers deal with the disposal of agricultural and domestic plastics by creating burnable, energy-efficient plastic nuggets, according to a Penn State agricultural engineer.



"In plastics recycling there are two unbreakable rules," says James W. Garthe, instructor in agricultural engineering and cooperative extension specialist. "You cannot mix types of plastic, and the plastics must be clean. This process does both since mixed plastics burn just fine and the dirt and debris come out with the coal ash anyway."

Agricultural plastics, such as mulch films, greenhouse films and pots, flats and silage wraps are universally dirty, and the cost of cleaning them before recycling would be expensive. Also, while mulch and greenhouse films are generally low-density polyethylene, nursery pots are polypropylene and soda bottles and milk jugs are polyethylene terephthalate and high-density polyethylene respectively. The plastics found on farms, nurseries and landscape yards are a variety of plastics that would never be mixed in conventional recycling.


Garthe’s unconventional approach is to convert the various film and solid plastics into a plastic nugget that can be burned with coal in coal fired boilers, refuse-derived fuel burners and even cement kilns. The process can mix plastic types, because it does not melt the plastic. Only the outer portion of the nugget is fused forming a melted jacket that contains the compressed plastic waste.

"Because the plastic is not completely melted, calculations show that only about one eighty-fifth of the energy released when the plastic nuggets burn is used to create the nugget," says Garthe. "Even if these plastics could be remelted and remolded, which they cannot, conventional recycling requires much higher energy input."

Including the energy required to preprocess the plastic and to cut the pieces in the calculations; the nuggets still supply 20 times the energy used to make them, according to Garthe.

Preprocessing for the prototype plant is currently done by cutting up the plastics and hand feeding them into the hopper where a feed rod pushes them into the die. The die is heated to melt the outer layer and a snake of compacted, but mostly unmelted plastic emerges. For the prototype, Garthe cuts the snakes into nuggets with a hot knife. Conveyers, a way to produce the proper-size plastic pieces, and automatic cutting of the nuggets will eventually be incorporated into the system.

"The system can be made small enough to be bench scale, but could also be enlarged to industrial scale," says the Penn State researcher.

While dirty and mixed plastics can be used, wet plastics might pose a problem for the system so some type of quality control would be necessary. Also, sandy plastics might cause a problem because the silicate sands might fuse onto the grates.

"We probably will not use polyvinyl chlorides, like PVC pipe or collapsible irrigation tube in the process because of the potential for emissions problems," says Garthe.

Burning the nuggets along with coal probably produces few emissions as the temperatures of 1,500 to 2,000 degrees Fahrenheit allow for more complete combustion. Plastics simply burned in a burn barrel reach only 400 to 700 degrees Fahrenheit and this incomplete combustion can produce unwanted emissions. Although Garthe believes that emissions are not a problem for the nuggets, Penn State’s Energy Institute is currently running tests on the nuggets to characterize the emissions. A grant from the National Watermelon Promotion Board, U.S. Department of Agriculture, supports these tests.

Currently, besides the small amount of plastic bottles and jugs that are recycled, most other plastic wastes end up being land-filled, where the energy potential of the plastic as a fuel is wasted. Nurserymen, landscapers, truck farmers, mushroom growers, hothouse owners and even dairy farmers produce varying amounts of plastic waste.

"Depending on the type of agricultural operation, the generation of plastic waste probably ranges from 10 pounds to 10,000 pounds a year," says Garthe.

The Penn State agricultural engineer has applied for a provisional patent on this process.

Andrea Elyse Messer | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht Raiding the rape field
23.05.2018 | Julius-Maximilians-Universität Würzburg

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>