Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Finding the Real Potential of No-Till Farming for Sequestering Carbon

The potential of no-tillage (NT) soils for increasing the soil organic carbon (SOC) pool must be critically and objectively assessed.
Most of the previous studies about SOC accrual in NT soils have primarily focused on the surface layer (

Humberto Blanco and Rattan Lal at The Ohio State University have investigated the impacts of long-term NT-based cropping systems on SOC sequestration on a regional scale in the eastern Corn Belt region under the Midwest Regional Carbon Sequestration Partnership (MRCSP) initiative funded by the U.S. Department of Energy’s Carbon Sequestration Program. For this particular study, they measured the SOC pool for the 0- to 60-cm soil depth under paired NT and plow tillage (PT) based cropping systems across 11 soils in Kentucky, Ohio, and Pennsylvania during spring 2007. The paired on-farm fields were sited on a similar soil and slope and under similar cropping systems with corn (Zea mays L.)-soybean (Glycine max L.) as the dominant rotation.

The results of this regional study, published in the May-June 2008 issue of Soil Science Society of America Journal, revealed that NT farming impacts on SOC sequestration depended on soil type and sampling depth. The SOC pools in NT exceeded those of PT in five out of 11 soils, but only within the surface layer (0- to 10-cm depth). Below the 10-cm depth, NT soils had equal to or even lower SOC than PT soils. The total SOC pool to 60-cm depth in NT was similar to those of PT soils. In some cases, the total SOC pool in PT soil was about 30% higher than in NT soils. The higher SOC pool under PT fields may be attributed to incorporation of crop residues in the subsoil and deeper root growth. Because the data for this study were obtained under on-farm conditions, results may be influenced by differences in soil profile, land use history, and cropping intensity.

The data from the 11 soils show that NT farming increases SOC concentration in the upper layers of some soils but does not store SOC more than PT soils for the entire soil profile. Blanco and Lal stated, “if the SOC pool was measured only within the surface soil (

This project is an ongoing research activity at The Ohio State University and among its next goals is to further scrutinize the potential of NT systems for sequestering SOC across a wide range of soils, topographic, and climatic conditions of the eastern U.S. Corn Belt.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at:

Soil Science Society of America Journal,, is a peer-reviewed international journal published six times a year by the Soil Science Society of America. Its contents focus on research relating to physics; chemistry; biology and biochemistry; fertility and plant nutrition; genesis, morphology, and classification; water management and conservation; forest, range, and wildland soils; nutrient management and soil and plant analysis; mineralogy; and wetland soils.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, and founded in 1936, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office. For more information, visit

SSSA is the founding sponsor of an approximately 5,000-square foot exhibition, Dig It! The Secrets of Soil, opening July 19, 2008 at the Smithsonian's National Museum of Natural History in Washington, DC.

Sara Uttech | newswise
Further information:

More articles from Agricultural and Forestry Science:

nachricht Algorithm could streamline harvesting of hand-picked crops
13.03.2018 | University of Illinois College of Engineering

nachricht A global conflict: agricultural production vs. biodiversity
06.03.2018 | Georg-August-Universität Göttingen

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>