Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding the Real Potential of No-Till Farming for Sequestering Carbon

07.05.2008
The potential of no-tillage (NT) soils for increasing the soil organic carbon (SOC) pool must be critically and objectively assessed.
Most of the previous studies about SOC accrual in NT soils have primarily focused on the surface layer (

Humberto Blanco and Rattan Lal at The Ohio State University have investigated the impacts of long-term NT-based cropping systems on SOC sequestration on a regional scale in the eastern Corn Belt region under the Midwest Regional Carbon Sequestration Partnership (MRCSP) initiative funded by the U.S. Department of Energy’s Carbon Sequestration Program. For this particular study, they measured the SOC pool for the 0- to 60-cm soil depth under paired NT and plow tillage (PT) based cropping systems across 11 soils in Kentucky, Ohio, and Pennsylvania during spring 2007. The paired on-farm fields were sited on a similar soil and slope and under similar cropping systems with corn (Zea mays L.)-soybean (Glycine max L.) as the dominant rotation.

The results of this regional study, published in the May-June 2008 issue of Soil Science Society of America Journal, revealed that NT farming impacts on SOC sequestration depended on soil type and sampling depth. The SOC pools in NT exceeded those of PT in five out of 11 soils, but only within the surface layer (0- to 10-cm depth). Below the 10-cm depth, NT soils had equal to or even lower SOC than PT soils. The total SOC pool to 60-cm depth in NT was similar to those of PT soils. In some cases, the total SOC pool in PT soil was about 30% higher than in NT soils. The higher SOC pool under PT fields may be attributed to incorporation of crop residues in the subsoil and deeper root growth. Because the data for this study were obtained under on-farm conditions, results may be influenced by differences in soil profile, land use history, and cropping intensity.

The data from the 11 soils show that NT farming increases SOC concentration in the upper layers of some soils but does not store SOC more than PT soils for the entire soil profile. Blanco and Lal stated, “if the SOC pool was measured only within the surface soil (

This project is an ongoing research activity at The Ohio State University and among its next goals is to further scrutinize the potential of NT systems for sequestering SOC across a wide range of soils, topographic, and climatic conditions of the eastern U.S. Corn Belt.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at: http://soil.scijournals.org/cgi/content/abstract/72/3/693

Soil Science Society of America Journal, http://soil.scijournals.org, is a peer-reviewed international journal published six times a year by the Soil Science Society of America. Its contents focus on research relating to physics; chemistry; biology and biochemistry; fertility and plant nutrition; genesis, morphology, and classification; water management and conservation; forest, range, and wildland soils; nutrient management and soil and plant analysis; mineralogy; and wetland soils.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, and founded in 1936, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office. For more information, visit www.soils.org.

SSSA is the founding sponsor of an approximately 5,000-square foot exhibition, Dig It! The Secrets of Soil, opening July 19, 2008 at the Smithsonian's National Museum of Natural History in Washington, DC.

Sara Uttech | newswise
Further information:
http://www.soils.org

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>