Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding the Real Potential of No-Till Farming for Sequestering Carbon

07.05.2008
The potential of no-tillage (NT) soils for increasing the soil organic carbon (SOC) pool must be critically and objectively assessed.
Most of the previous studies about SOC accrual in NT soils have primarily focused on the surface layer (

Humberto Blanco and Rattan Lal at The Ohio State University have investigated the impacts of long-term NT-based cropping systems on SOC sequestration on a regional scale in the eastern Corn Belt region under the Midwest Regional Carbon Sequestration Partnership (MRCSP) initiative funded by the U.S. Department of Energy’s Carbon Sequestration Program. For this particular study, they measured the SOC pool for the 0- to 60-cm soil depth under paired NT and plow tillage (PT) based cropping systems across 11 soils in Kentucky, Ohio, and Pennsylvania during spring 2007. The paired on-farm fields were sited on a similar soil and slope and under similar cropping systems with corn (Zea mays L.)-soybean (Glycine max L.) as the dominant rotation.

The results of this regional study, published in the May-June 2008 issue of Soil Science Society of America Journal, revealed that NT farming impacts on SOC sequestration depended on soil type and sampling depth. The SOC pools in NT exceeded those of PT in five out of 11 soils, but only within the surface layer (0- to 10-cm depth). Below the 10-cm depth, NT soils had equal to or even lower SOC than PT soils. The total SOC pool to 60-cm depth in NT was similar to those of PT soils. In some cases, the total SOC pool in PT soil was about 30% higher than in NT soils. The higher SOC pool under PT fields may be attributed to incorporation of crop residues in the subsoil and deeper root growth. Because the data for this study were obtained under on-farm conditions, results may be influenced by differences in soil profile, land use history, and cropping intensity.

The data from the 11 soils show that NT farming increases SOC concentration in the upper layers of some soils but does not store SOC more than PT soils for the entire soil profile. Blanco and Lal stated, “if the SOC pool was measured only within the surface soil (

This project is an ongoing research activity at The Ohio State University and among its next goals is to further scrutinize the potential of NT systems for sequestering SOC across a wide range of soils, topographic, and climatic conditions of the eastern U.S. Corn Belt.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at: http://soil.scijournals.org/cgi/content/abstract/72/3/693

Soil Science Society of America Journal, http://soil.scijournals.org, is a peer-reviewed international journal published six times a year by the Soil Science Society of America. Its contents focus on research relating to physics; chemistry; biology and biochemistry; fertility and plant nutrition; genesis, morphology, and classification; water management and conservation; forest, range, and wildland soils; nutrient management and soil and plant analysis; mineralogy; and wetland soils.

The Soil Science Society of America (SSSA) is a progressive, international scientific society that fosters the transfer of knowledge and practices to sustain global soils. Based in Madison, WI, and founded in 1936, SSSA is the professional home for 6,000+ members dedicated to advancing the field of soil science. It provides information about soils in relation to crop production, environmental quality, ecosystem sustainability, bioremediation, waste management, recycling, and wise land use.

SSSA supports its members by providing quality research-based publications, educational programs, certifications, and science policy initiatives via a Washington, DC, office. For more information, visit www.soils.org.

SSSA is the founding sponsor of an approximately 5,000-square foot exhibition, Dig It! The Secrets of Soil, opening July 19, 2008 at the Smithsonian's National Museum of Natural History in Washington, DC.

Sara Uttech | newswise
Further information:
http://www.soils.org

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>