Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bees disease – one step closer to finding a cure

02.05.2008
Scientists in Germany have discovered a new mechanism of infection for the most fatal bee disease. American Foulbrood (AFB) is the only infectious disease which can kill entire colonies of bees. Every year, this notifiable disease is causing considerable economic loss to beekeepers all over the world. The only control measure is to destroy the infected hive.

The mechanism of infection (pathogenic mechanism) was originally thought to be through the growth of a bacterium called Paenibacillus larvae in the organ cavity of honey bee larvae. The accepted view was that the bacteria germinate preferentially at either end of the gut of honey bee larvae then make holes in the gut wall and enter the larval organ cavity, the presumed primary place of bacterial proliferation.

In a paper published in Environmental Microbiology, Professor Elke Genersch and colleagues in Berlin explain that they have discovered that these bacteria cause infection in a completely different way. They colonize the larval midgut, do most of their multiplying in the mid-gut - living from the food ingested by the larvae - until eventually the honey bee larvae gut contains nothing but these disease-causing (pathogenic) bacteria. It isn’t until then that the bacteria ‘burst’ out of the gut into the organ cavity thereby killing the larvae. These findings are a major breakthrough in honeybee pathology.

“Now that we fully understand the way in which this disease works, we can start to look at ways of preventing the spread of infection” said Professor Genersch.

Honeybees are important pollinators of crops, fruit and wild flowers. Therefore, they are indispensable for a sustainable and profitable agriculture but also for the maintenance of the non-agricultural ecosystem. Honeybees are attacked by numerous pathogens including viruses, bacteria, fungi and parasites. For most, if not all of these diseases, the molecular pathogenesis is poorly understood hampering the development of new ideas about how to prevent and combat honeybee diseases.

Professor Genersch added: “Molecular understanding of pathogen-host interactions is vital for the development of effective measures against infectious diseases. Therefore, in the long run, our findings will help to save large numbers of bees all over the world.”

Lucy Mansfield | alfa
Further information:
http://www.blackwellpublishing.com/press/pressitem.asp?ref=1712

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>