Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Yeast Useful For Pollutant Removal Processes

28.06.2002


Sugar refineries and distilleries produce effluent which is harmful for the environment. The sugar industry produces two tonnes of sugar cane bagasse (a straw-like material) for every tonne of refined sugar. For Cuba this translates into 10 to 20 million tonnes of bagasse per year.



Distilleries, often associated with sugar cane production, emit copious amounts of polluting volatile components (especially volatile organic compounds, VOCs). In Cuba, an estimated annual 1 600 tonnes of ethanol, now the subject of control regulations, are released into the atmosphere. Stricter legislation recently introduced prompted many pieces of research to discover simple, cost-effective biological means of eliminating polluting elements from volatile emissions (biofiltration, biotrickling), which would be efficient enough to treat large volumes of even with low pollutant concentrations (about 1 g/m3).

A team from the IRD, in conjunction with the UAM (Mexico) and the ICIDCA (Cuba), has devised a laboratory-scale biofiltration system which can eliminate ethanol (along with smaller quantities of other possible VOCs ) emitted by distilleries, using sugar cane bagasse as support. The process involves passing the polluted air stream over a porous medium on which are fixed microorganisms preselected for their ability to decompose “target" compounds. Biofiltration is used successfully today at full industrial scale for controlling VOCs emissions from printing, certain branches of the food industry or for odour abatement at wastewater treatment plants.


The researchers first selected a yeast, Candida utilis, that could decompose ethanol, the organism’s only carbon source. Cultivation on a bed reactor followed, with the yeast growing directly on the bagasse which had been washed, sieved and sterilized. The bagasse is both solid and porous, allowing good circulation of polluted air, making it a good biofilter support. Inoculation with mineral salts, especially ammonium nitrate, helps increase the reactor’s degradation capacity. That salt brings nitrogen, which the yeast uses for increasing biomass and therefore for consuming more ethanol.

The team determined the optimal inlet ethanol concentrations needed to pass through the reactor for best biofilter efficiency. In suitable conditions, Candida utilis can rapidly decompose large quantities of ethanol. The yeast can thus eliminate up to 250 g of ethanol/hour/ m3 of the reactor. But any increase in ethanol loading rates must be gradual and doses of nutrient solution must be added stepwise. If the reactor is “overloaded” with ethanol, the yeast can no longer use, removal efficiency and elimination capacity drop abruptly and the system is blocked (1).

Candida utilis can be a prime remover simple molecules like ethanol from air. And a converter of waste into food, bagasse into balanced livestock feed. Its talent for harnessing the ethanol on bagasse and its naturally rich protein stock enables Candida utilis to enrich that material. The experiment achieved a 5.2 % protein concentration. Researchers are endeavouring to reach an even better figure. Whether or not the animals will accept this new forage remains to be confirmed. Indications are that they do, judging by trials under way in Cuba.

Ethanol biofiltration by Candida utilis has still to be investigated at larger scale and then at full industrial proportions. If successful, the process could be applied in other tropical countries which are major producers of sugar and alcohol, like Brazil, Cuba, Mexico and India.

(1) Yeast oxidizes ethanol, but not completely, converting it first into acetaldehyde, then acetic acid..

Marie-Lise Sabrie | alfa

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>