Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Yeast Useful For Pollutant Removal Processes

28.06.2002


Sugar refineries and distilleries produce effluent which is harmful for the environment. The sugar industry produces two tonnes of sugar cane bagasse (a straw-like material) for every tonne of refined sugar. For Cuba this translates into 10 to 20 million tonnes of bagasse per year.



Distilleries, often associated with sugar cane production, emit copious amounts of polluting volatile components (especially volatile organic compounds, VOCs). In Cuba, an estimated annual 1 600 tonnes of ethanol, now the subject of control regulations, are released into the atmosphere. Stricter legislation recently introduced prompted many pieces of research to discover simple, cost-effective biological means of eliminating polluting elements from volatile emissions (biofiltration, biotrickling), which would be efficient enough to treat large volumes of even with low pollutant concentrations (about 1 g/m3).

A team from the IRD, in conjunction with the UAM (Mexico) and the ICIDCA (Cuba), has devised a laboratory-scale biofiltration system which can eliminate ethanol (along with smaller quantities of other possible VOCs ) emitted by distilleries, using sugar cane bagasse as support. The process involves passing the polluted air stream over a porous medium on which are fixed microorganisms preselected for their ability to decompose “target" compounds. Biofiltration is used successfully today at full industrial scale for controlling VOCs emissions from printing, certain branches of the food industry or for odour abatement at wastewater treatment plants.


The researchers first selected a yeast, Candida utilis, that could decompose ethanol, the organism’s only carbon source. Cultivation on a bed reactor followed, with the yeast growing directly on the bagasse which had been washed, sieved and sterilized. The bagasse is both solid and porous, allowing good circulation of polluted air, making it a good biofilter support. Inoculation with mineral salts, especially ammonium nitrate, helps increase the reactor’s degradation capacity. That salt brings nitrogen, which the yeast uses for increasing biomass and therefore for consuming more ethanol.

The team determined the optimal inlet ethanol concentrations needed to pass through the reactor for best biofilter efficiency. In suitable conditions, Candida utilis can rapidly decompose large quantities of ethanol. The yeast can thus eliminate up to 250 g of ethanol/hour/ m3 of the reactor. But any increase in ethanol loading rates must be gradual and doses of nutrient solution must be added stepwise. If the reactor is “overloaded” with ethanol, the yeast can no longer use, removal efficiency and elimination capacity drop abruptly and the system is blocked (1).

Candida utilis can be a prime remover simple molecules like ethanol from air. And a converter of waste into food, bagasse into balanced livestock feed. Its talent for harnessing the ethanol on bagasse and its naturally rich protein stock enables Candida utilis to enrich that material. The experiment achieved a 5.2 % protein concentration. Researchers are endeavouring to reach an even better figure. Whether or not the animals will accept this new forage remains to be confirmed. Indications are that they do, judging by trials under way in Cuba.

Ethanol biofiltration by Candida utilis has still to be investigated at larger scale and then at full industrial proportions. If successful, the process could be applied in other tropical countries which are major producers of sugar and alcohol, like Brazil, Cuba, Mexico and India.

(1) Yeast oxidizes ethanol, but not completely, converting it first into acetaldehyde, then acetic acid..

Marie-Lise Sabrie | alfa

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>