Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two Spanish proposals for Precision Agriculture

25.04.2008
They are developing 3D maps of the land and a system for the selective application of herbicides

Spanish scientists have designed a mechanism that by simulating human sight generates 3D maps of agricultural land, as well as a system that can apply herbicides only on those plots where they are needed.

Both innovations have been put forward by researchers from the UPV (Universidad Politécnica de Valencia) and the UCM (Universidad Complutense of Madrid), respectively, and are within the field of Precision Agriculture, a new discipline that tries to optimise farm management from an agronomic, economic and environmental point of view.

The methodology used to produce the three-dimensional maps, published recently in the Computers and Electronics in Agriculture journal, has been developed by Francisco Rovira Más from the department of Mechanisation and Agrarian Technology of the UPV, together with scientists from the University of Illinois (USA). Rovira explains to SINC that global maps are essential in Precision Agriculture, i.e. maps that use GNSS (Global Navigation Satellite Systems) techniques, with the traditional East and North co-ordinates. His team proposes to add a third dimension, altitude, and a level of detail “only attainable by means of local positioning systems that use cameras”.

In order to create these three-dimensional maps, a stereoscopic camera and sensors providing localisation and orientation data for the vehicle are installed by the researchers in a farm vehicle (a tractor or combine-harvester, for example). The images obtained by the camera are those that simulate human sight, as they enable at least two different simultaneous images to be obtained. When they are compared the distance at which the objects that appear within the field of vision of the camera can be estimated. “If the objects are very far away from the camera, they will occupy practically the same position in both images, but if they are near the camera, the differences will be greater”, explains Rovira Más.

With respect to the sensors, a GPS localisation sensor is used that allows the vehicle to be situated in real time within the system of co-ordinates, together with a sensor called “an inertial measurement unit”, to estimate their positions and speeds, as well as their gradient.

The scenes of the area captured by the camera are transformed into information that generates 3D point clouds. “The huge quantity of data these clouds involve, together with the lack of precision of the sensors, are the main challenges to overcome”, says the researcher. Moreover, he adds, the global maps give a plethora of information in real time for applications such as automatic guided vehicles, an improvement in safety measures, the monitoring of the increase in harvests or the planning of agricultural tasks according to local conditioning and climate factors (temperature, humidity, wind, quality of the soil, size and plant variety, historic yield data, etc.)

Herbicide only where it is needed

Moreover in Computers and Electronics in Agriculture, and other journals, such as Pattern Recognition, a new proposal has been published about Precision Agriculture focusing on the selective use of herbicides. Gonzalo Pajares, a lecturer in the Department of Software Engineering and Artificial Intelligence at the Faculty of Information Technology at the UCM, and one of the authors of the study, explains that this involves an intelligent system “based on the computerised vision to identify areas infested with weeds that require treatment with herbicides”.

The procedure is based on the analysis of the digital image sequences, captured by camera, of the field that is going to be treated. The method involves two stages: The division of the images into field parcels, and the decision about which of the parcels must be sprayed or not, and in what quantity. The choice is achieved by using Artificial Intelligence processes, that is to say “multi-attribute decision making”, a mathematical technique that enables a choice to be made between two finite alternatives. “This allows for doses of herbicides to be applied only in those fields where they are really needed", the researcher clarifies. At the moment, these phytosanitary products are applied indiscriminately to fields, regardless of whether they are needed or not.

The system thought up by the information technologists has been tried successfully in the cultivation of cereal and maize in the La Poveda research station in Arganda del Rey (Madrid), property of the CSIC (Consejo Superior de Investigaciones Científicas) (Spanish National Research Council). This government agency has promoted the development of the study through the Institutes known as the Instituto de Automática Industrial (Institute of Industrial Automation) and the |Instituto de Ciencias Medioambientales (Institute of Environmental Sciences). The results obtained represent a saving of over 80% in treatment with herbicides, which translates into a considerable reduction in costs. Pajares says, “and what is more important, there is also a reduction in pollution of the environment” without there being any repercussions on the productivity of the land.

The studies about Precision Agriculture, such as the two proposed by the Spanish researchers, enables farming tasks such as spraying with herbicides, sowing and the use of fertilisers, to be planned in a more efficient and sustainable way. These studies put forward the use of new technologies in order to optimise farm work, but do not forget the existence of the changeable nature of the land, something farmers have known about since time began.

Sinc Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>