Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Call for More Access to Biotech Crop Data

25.04.2008
Biologists call for making available more detailed maps of the locations of biotech crops.

Access to maps of biotech crops on a county and township level will give researchers greater ability to analyze the effects of biotech crops on wildlife, water quality, and on pest and beneficial insects.

"Since 1996 more than a billion acres have been planted with biotech crops in the U.S.," said Michelle Marvier of Santa Clara University in Calif. "We don't really know what are the pros and cons of this important new agricultural technology."

"People on both sides of the debate about genetically engineered crops have been making a lot of claims," said Marvier, an associate professor of biology and environmental studies. "One side has been saying that biotech crops reduce insecticide use, reduce tillage and therefore the erosion of top soil. People on the other side say that biotech crops could hurt native species."

The scientists' call will be published as a Policy Forum in the April 25, 2008, issue of the journal Science. Marvier's co-authors are Yves Carrière and Bruce Tabashnik of The University of Arizona in Tucson; Norman Ellstrand of the University of California at Riverside; Paul Gepts of the University of California at Davis; Peter Kareiva of Santa Clara University and The Nature Conservancy; Emma Rosi-Marshall of Loyola University in Chicago; and L. LaReesa Wolfenbarger of the University of Nebraska in Omaha.

The article, Harvesting Data from Genetically Engineered Crops, has a map showing the distribution of crop fields in Arizona township by township.

Tabashnik, UA professor of entomology and head of the department, said, "Putting Arizona's biotech cotton on the map has allowed us to be a leader in assessing the environmental impacts of biotech crops."

In Arizona, a unique collaboration between researchers and farmers has made detailed crop data available to researchers at The University of Arizona.

The collaboration has been going on more than a decade.

Tabashnik said, "It's a win-win situation. We analyze data they collect, so they can control pests better and make more money. It helps us obtain fundamental information about what's going on in the field that we could never get without them."

One of the UA's analyses showed that adoption of biotech cotton in Arizona helped to reduce insecticide use while sustaining yields.

Carrière, a UA professor of entomology who has done many of the analyses, said, "You have to protect the privacy of the farmers. We've done it in Arizona, so why not do it across the country?"

To start examining those questions in other parts of the U.S., the team of scientists calls for the government to make available data it is already collecting.

At the present time, the team writes, the U.S. Department of Agriculture collects data at the scale of individual farms, but the data are only available to researchers at the scale of entire states. Answering key questions about the environmental impacts of genetically engineered crops requires finer spatial resolution.

"The analyses could be about quality of water, quality of soil, non-target effects, regional population density of pests and economic aspects such as yield improvement," Carrière said. "The findings could be useful to a wide range of people."

The U.S. Department of Agriculture's National Agricultural Statistical Service annually collects data documenting acreage planted to various crops in all 50 states, the researchers write in their paper. In addition, the NASS annually interviews more than 125,000 farmers about their land use and the acreage planted in various biotech crops.

Tabashnik said, "We're already spending the money to have these data collected. Let's make them available in the right format for researchers to use. It would be a relatively inexpensive additional step with enormous scientific and public benefit."

Lead author:
Michelle Marvier, 408-551-7189, MMarvier@scu.edu
University of Arizona co-authors:
Yves Carrière, 520-626-8329, ycarrier@ag.arizona.edu
languages: English and French
Bruce Tabashnik, 520-621-1141, brucet@ag.arizona.edu
language: English
Related Web sites:
Michelle Marvier
http://www.scu.edu/cas/environmentalstudies/mmarvier.cfm
Bruce Tabashnik
http://ag.arizona.edu/ento/faculty/tabashnik.htm
Yves Carriere
http://ag.arizona.edu/ento/faculty/carriere.htm
Arizona Cotton and Research Protection Council http://azcotton.org/

Mari N. Jensen | The University of Arizona
Further information:
http://www.arizona.edu

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>