Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Herbicide-Tolerant Crops Can Improve Water Quality

23.04.2008
A USDA study suggests that planting herbicide-tolerant crop varieties and using contact herbicides can reduce herbicide loss and concentrations in runoff.

The residual herbicides commonly used in the production of corn and soybean are frequently detected in rivers, streams, and reservoirs at concentrations that exceed drinking water standards in areas where these crops are extensively grown.

When these bodies of water are used as sources of drinking water this contamination can lead to increased treatment costs or a need to seek alternative sources of supply. Additionally, these herbicides can have negative effects on aquatic ecosystems at concentrations well below their drinking water standards.

When genetically modified, herbicide-tolerant, corn and soybean became commercially available in the 1990s it became possible to replace some of the problematic residual herbicides with strongly sorbed, short half-life, contact herbicides that may be more environmentally benign. By 2004 almost 90% of the soybean grown in the US was genetically modified for tolerance to the contact herbicide glyphosate (Roundup), which is currently the most widely used herbicide in the world.

In a four-year study, researchers at the USDA-ARS’s North Appalachian Experimental Watershed near Coshocton, OH compared relative losses of both herbicide types when applied at normal rates to seven small watersheds planted with Liberty-Linked corn or Roundup Ready soybean. In their report, published in the March-April issue of the Journal of Environmental Quality, soil scientists Martin Shipitalo and Lloyd Owens, and agricultural engineer Rob Malone, noted that losses of contact herbicides in surface runoff were usually much less than those for the residual herbicides, as a percentage of the amount of herbicide applied. Averaged for all soybean crop years, glyphosate loss was about one-seventh that of metribuzin and one half that of alachlor, residual herbicides it can replace. Similarly, average loss of the contact herbicide glufosinate (Liberty) was one-fourth that of atrazine, a residual corn herbicide it can replace.

More importantly, according to project leader Martin Shipitalo, “The concentrations of the contact herbicides in the runoff never exceeded their established or proposed drinking water standards while the residual herbicides frequently exceeded their standards, particularly in the first few runoff events after application”. Concentrations of atrazine in runoff were up to 240 times greater than its drinking water standard while alachlor concentrations were up to 700 times greater than its standard. Conversely, the maximum glyphosate concentration noted was nearly four times less than its standard. Glufosinate currently has no established standard, but was only detected at low concentrations and was below its detection limit 80 days after application.

In light of increased economic incentives to grow more corn and soybean for biofuel production, these results suggest to farmers and the regulatory community that herbicide losses and concentrations in runoff can be reduced by planting herbicide-tolerant varieties of these crops and replacing some of the residual herbicides with the contact herbicides compared in this study.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://jeq.scijournals.org/cgi/content/abstract/37/2/401.

The Journal of Environmental Quality, http://jeq.scijournals.org is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>