Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crop management strategies key to a healthy Gulf, planet

23.04.2008
Improved management of crops and perennials could go a long way toward alleviating the problem of hypoxia, which claims thousands of fish, shrimp and shellfish in the Gulf of Mexico each spring.

An assessment by a team led by Virginia Dale of Oak Ridge National Laboratory's Environmental Sciences Division concludes that low oxygen levels in water, or hypoxia, causes problems throughout the ecosystem. The death zone, scientifically documented in the Gulf since 1985, has consistently covered about 6,000 square miles, usually off the coast of Louisiana west of the Mississippi River's mouth.

The problem is caused in part by fertilizer run-off from agricultural activities in the Mississippi basin, which drains about 48 percent of the U.S. land. These nutrients combined with stratification caused by warm freshwater from the Mississippi and Atchafalaya rivers running into the colder saltwater of the Gulf sets up the deadly process. Algae grows, then dies and sinks to the bottom, where it decomposes, using up oxygen in the process.

"The oxygen-depleted water at the bottom is not replenished because of the lack of circulation," Dale said. "The more water that flows into the Gulf and the more nutrients in the water, the worse the hypoxia becomes."

While scientists initially believed nitrogen was the major culprit, the assessment team for the Science Advisory Board of the Environmental Protection Agency realized that phosphorus also plays a significant role. The team is recommending a 45 percent reduction in phosphorus and nitrogen from the 1980-1996 average flux during the spring (April, May and June) on a five-year running average.

The assessment team found that the most significant opportunities for nitrogen and phosphorus reduction in the Mississippi Basin are promotion of the production of environmentally sustainable biofuel and other perennial crops, improved infield management of nutrients, construction and restoration of wetlands, tighter nitrogen and phosphorus limits on municipal and industrial sources and improved targeting of riparian buffers.

Other recommendations include using cellulosic biofuels such as switchgrass and poplar hybrids, but the assessment team acknowledged that field implementation of cellulosic biofuel crops is under development. In the meantime, cellulosic ethanol is being produced from corn stover -- the cobs, leaves and stalks left in a field after harvest.

Dale is proposing research to establish landscape design that will help farmers and land management agencies determine where and how biofuel feedstocks can be grown with minimal environmental impacts.

"In our report to the EPA, we're recommending planting perennials, promoting environmentally sustainable biofuel production and using no-till farming as key land management strategies," Dale said. "Reducing the amount of nutrients on fields and restoring wetlands are other important parts of the panel's land management recommendations."

At a recent Department of Energy conference, "Biomass 2008: Fueling our Future," researchers discussed multiple aspects of bioenergy crops.

"Choices about what crops are grown and how they are planted, fertilized and harvested influence the effects of biofuels on native plant diversity, competition with food crops and effects on water and air quality," Dale said.

Decisions in this area also affect economic viability because the distance that biofuels must be transported has a large effect on the market cost of biofuels as well as the quality of life for those who live in communities through which the bulky fuel is transported, Dale said.

Dale and colleagues at ORNL are now focusing on watershed studies to determine what is happening between fields and the Gulf using models at different scales to interpret the data.

"Understanding these intermediate layers is crucial to filtering out the noise and figuring out how to shrink the hypoxic zone," Dale said. "The approach we're developing considers aspects of the landscape, including environmental and socioeconomic conditions, the bioenergy features and ecological and biological feedbacks."

While water availability and quality emerges as one of the most limiting factors, the linkage between water and bioenergy choices on medium and large scales is poorly qualified, according to Dale. An approach that considers environmental and socioeconomic changes in land use and landscape dynamics provides a way to quantify the influence of alternative bioenergy choices on water quality and other components of the environment.

This assessment was supported by EPA while the landscape research was funded by ORNL's Laboratory Directed Research and Development program. UT-Battelle manages Oak Ridge National Laboratory for the Department of Energy.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>