Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crop management strategies key to a healthy Gulf, planet

23.04.2008
Improved management of crops and perennials could go a long way toward alleviating the problem of hypoxia, which claims thousands of fish, shrimp and shellfish in the Gulf of Mexico each spring.

An assessment by a team led by Virginia Dale of Oak Ridge National Laboratory's Environmental Sciences Division concludes that low oxygen levels in water, or hypoxia, causes problems throughout the ecosystem. The death zone, scientifically documented in the Gulf since 1985, has consistently covered about 6,000 square miles, usually off the coast of Louisiana west of the Mississippi River's mouth.

The problem is caused in part by fertilizer run-off from agricultural activities in the Mississippi basin, which drains about 48 percent of the U.S. land. These nutrients combined with stratification caused by warm freshwater from the Mississippi and Atchafalaya rivers running into the colder saltwater of the Gulf sets up the deadly process. Algae grows, then dies and sinks to the bottom, where it decomposes, using up oxygen in the process.

"The oxygen-depleted water at the bottom is not replenished because of the lack of circulation," Dale said. "The more water that flows into the Gulf and the more nutrients in the water, the worse the hypoxia becomes."

While scientists initially believed nitrogen was the major culprit, the assessment team for the Science Advisory Board of the Environmental Protection Agency realized that phosphorus also plays a significant role. The team is recommending a 45 percent reduction in phosphorus and nitrogen from the 1980-1996 average flux during the spring (April, May and June) on a five-year running average.

The assessment team found that the most significant opportunities for nitrogen and phosphorus reduction in the Mississippi Basin are promotion of the production of environmentally sustainable biofuel and other perennial crops, improved infield management of nutrients, construction and restoration of wetlands, tighter nitrogen and phosphorus limits on municipal and industrial sources and improved targeting of riparian buffers.

Other recommendations include using cellulosic biofuels such as switchgrass and poplar hybrids, but the assessment team acknowledged that field implementation of cellulosic biofuel crops is under development. In the meantime, cellulosic ethanol is being produced from corn stover -- the cobs, leaves and stalks left in a field after harvest.

Dale is proposing research to establish landscape design that will help farmers and land management agencies determine where and how biofuel feedstocks can be grown with minimal environmental impacts.

"In our report to the EPA, we're recommending planting perennials, promoting environmentally sustainable biofuel production and using no-till farming as key land management strategies," Dale said. "Reducing the amount of nutrients on fields and restoring wetlands are other important parts of the panel's land management recommendations."

At a recent Department of Energy conference, "Biomass 2008: Fueling our Future," researchers discussed multiple aspects of bioenergy crops.

"Choices about what crops are grown and how they are planted, fertilized and harvested influence the effects of biofuels on native plant diversity, competition with food crops and effects on water and air quality," Dale said.

Decisions in this area also affect economic viability because the distance that biofuels must be transported has a large effect on the market cost of biofuels as well as the quality of life for those who live in communities through which the bulky fuel is transported, Dale said.

Dale and colleagues at ORNL are now focusing on watershed studies to determine what is happening between fields and the Gulf using models at different scales to interpret the data.

"Understanding these intermediate layers is crucial to filtering out the noise and figuring out how to shrink the hypoxic zone," Dale said. "The approach we're developing considers aspects of the landscape, including environmental and socioeconomic conditions, the bioenergy features and ecological and biological feedbacks."

While water availability and quality emerges as one of the most limiting factors, the linkage between water and bioenergy choices on medium and large scales is poorly qualified, according to Dale. An approach that considers environmental and socioeconomic changes in land use and landscape dynamics provides a way to quantify the influence of alternative bioenergy choices on water quality and other components of the environment.

This assessment was supported by EPA while the landscape research was funded by ORNL's Laboratory Directed Research and Development program. UT-Battelle manages Oak Ridge National Laboratory for the Department of Energy.

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>