Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover novel 'gene toggles' in world’s top food crop

11.04.2008
University of Delaware researchers, in collaboration with U.S. and international colleagues, have found a new type of molecule--a kind of “micro-switch”--that can turn off genes in rice, which is the primary source of food for more than half the world's population. The discovery is reported in the March 25 issue of the Proceedings of the National Academy of Sciences of the United States of America.

Composed of short lengths of ribonucleic acids (RNAs), on the order of about 20 nucleotides long, these novel molecules, called natural antisense microRNAs (nat-miRNAs), target the genes sitting directly across from them on the opposite strand of DNA in a rice cell.

In addition to uncovering a new genetic switch and gaining insight about its pathways and evolution, which are important to the health of a grain that feeds most of the world, the research also may help scientists locate this type of novel gene regulator in other organisms, including humans. MicroRNAs regulate 30 percent of human genes and thus are critical to human health and development.

The research was led by Pamela Green, the Crawford Greenewalt Chair of Plant Sciences at UD, and Blake Meyers, associate professor of plant and soil sciences, and their laboratory groups at the Delaware Biotechnology Institute, including associate scientist Cheng Lu, postdoctoral researchers Dong-Hoon Jeong and Kan Nobuta, graduate students Karthik Kulkarni, Manoj Pillay, and Shawn Thatcher and research associate Rana German.

Scientists at Cold Spring Harbor Laboratory and at the Chinese Academy of Sciences collaborated on the project.

MicroRNAs are small RNA molecules that play a key role in regulating cellular processes, including a cell's development and its responses to stress. These micro-molecules bind to specific messenger RNA molecules, which carry instructions to the cells to make particular proteins. This binding typically causes the messenger RNAs to be degraded in plant cells.

“We were using a deep-sequencing approach to identify new microRNAs when we found these novel examples,” said Green. “These tiny RNA molecules are a special type of microRNA that have an antisense configuration relative to their targets. It's an exciting finding. We believe they could be present in many organisms,” she noted.

Some 240 microRNAs previously had been annotated in rice. Using a high-throughput gene-sequencing technique known as Massively Parallel Signature Sequencing (MPSS), the UD research team analyzed over 4 million small RNAs from 6 rice samples, which yielded 24 new microRNAs, including the unique new group of molecules called natural antisense microRNAs.

When a gene is ready to produce a protein, its two strands of DNA unravel. The first strand, called the “sense” transcript, produces messenger RNA, which carries the recipe for making a specific protein. However, the other strand of DNA may produce a complementary antisense RNA molecule, which sometimes can block production of the protein, thus turning off, or “silencing,” the gene.

Blake Meyers, associate professor of plant and soil sciences at UD, a collaborator on the research, is working to determine when the newly discovered microRNA in rice first evolved. In the newly discovered case, the sense messenger RNA and antisense RNA operate differently, and different pieces are spliced out of each. These splicing differences limit the pairing ability between the sense and the antisense to a small region that includes the microRNA. In addition, splicing of the precursor of natural antisense microRNAs allows a hairpin to form, and hairpins are a requirement for any microRNA to be made.

Green noted that such microRNAs are not present in the common research plant Arabidopsis, which is a dicotyledon, a plant group that has two seed leaves (cotyledons) when it first sprouts. However, the UD team has identified the novel microRNAs in monocotyledons--plants that have solitary seed leaves--such as rice, corn and other grains.

“The novel microRNAs, target sites, and sense-antisense transcript arrangement that we discovered are conserved among monocots, indicating that this pathway is at least 50 million years old,” Meyers noted.

The next step in the research, Green said, will be to try to understand how microRNAs help rice plants respond to adverse environmental conditions, such as drought or limited nutrient availability.

In addition, the UD group currently is analyzing small RNAs in a diverse set of plant species to determine if this new class of microRNA may be present in a broader set of monocots or other plants.

“Comparative genomics is an important method for understanding microRNA evolution and diversity and has the potential to tell us when this type of natural antisense-microRNA might have first evolved,” Meyers said.

The research was funded by the National Science Foundation and the U.S. Department of Agriculture. Additionally, UD postdoctoral researcher Dong-Hoon Jeong was partially supported by a Korean Research Foundation Fellowship funded by the Korean government, and doctoral student Shawn Thatcher was supported by a training grant awarded to UD's multidisciplinary Chemistry/Biology Interface Program from the National Institutes of Health.

Tracey Bryant | EurekAlert!
Further information:
http://www.udel.edu

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>