Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover novel 'gene toggles' in world’s top food crop

11.04.2008
University of Delaware researchers, in collaboration with U.S. and international colleagues, have found a new type of molecule--a kind of “micro-switch”--that can turn off genes in rice, which is the primary source of food for more than half the world's population. The discovery is reported in the March 25 issue of the Proceedings of the National Academy of Sciences of the United States of America.

Composed of short lengths of ribonucleic acids (RNAs), on the order of about 20 nucleotides long, these novel molecules, called natural antisense microRNAs (nat-miRNAs), target the genes sitting directly across from them on the opposite strand of DNA in a rice cell.

In addition to uncovering a new genetic switch and gaining insight about its pathways and evolution, which are important to the health of a grain that feeds most of the world, the research also may help scientists locate this type of novel gene regulator in other organisms, including humans. MicroRNAs regulate 30 percent of human genes and thus are critical to human health and development.

The research was led by Pamela Green, the Crawford Greenewalt Chair of Plant Sciences at UD, and Blake Meyers, associate professor of plant and soil sciences, and their laboratory groups at the Delaware Biotechnology Institute, including associate scientist Cheng Lu, postdoctoral researchers Dong-Hoon Jeong and Kan Nobuta, graduate students Karthik Kulkarni, Manoj Pillay, and Shawn Thatcher and research associate Rana German.

Scientists at Cold Spring Harbor Laboratory and at the Chinese Academy of Sciences collaborated on the project.

MicroRNAs are small RNA molecules that play a key role in regulating cellular processes, including a cell's development and its responses to stress. These micro-molecules bind to specific messenger RNA molecules, which carry instructions to the cells to make particular proteins. This binding typically causes the messenger RNAs to be degraded in plant cells.

“We were using a deep-sequencing approach to identify new microRNAs when we found these novel examples,” said Green. “These tiny RNA molecules are a special type of microRNA that have an antisense configuration relative to their targets. It's an exciting finding. We believe they could be present in many organisms,” she noted.

Some 240 microRNAs previously had been annotated in rice. Using a high-throughput gene-sequencing technique known as Massively Parallel Signature Sequencing (MPSS), the UD research team analyzed over 4 million small RNAs from 6 rice samples, which yielded 24 new microRNAs, including the unique new group of molecules called natural antisense microRNAs.

When a gene is ready to produce a protein, its two strands of DNA unravel. The first strand, called the “sense” transcript, produces messenger RNA, which carries the recipe for making a specific protein. However, the other strand of DNA may produce a complementary antisense RNA molecule, which sometimes can block production of the protein, thus turning off, or “silencing,” the gene.

Blake Meyers, associate professor of plant and soil sciences at UD, a collaborator on the research, is working to determine when the newly discovered microRNA in rice first evolved. In the newly discovered case, the sense messenger RNA and antisense RNA operate differently, and different pieces are spliced out of each. These splicing differences limit the pairing ability between the sense and the antisense to a small region that includes the microRNA. In addition, splicing of the precursor of natural antisense microRNAs allows a hairpin to form, and hairpins are a requirement for any microRNA to be made.

Green noted that such microRNAs are not present in the common research plant Arabidopsis, which is a dicotyledon, a plant group that has two seed leaves (cotyledons) when it first sprouts. However, the UD team has identified the novel microRNAs in monocotyledons--plants that have solitary seed leaves--such as rice, corn and other grains.

“The novel microRNAs, target sites, and sense-antisense transcript arrangement that we discovered are conserved among monocots, indicating that this pathway is at least 50 million years old,” Meyers noted.

The next step in the research, Green said, will be to try to understand how microRNAs help rice plants respond to adverse environmental conditions, such as drought or limited nutrient availability.

In addition, the UD group currently is analyzing small RNAs in a diverse set of plant species to determine if this new class of microRNA may be present in a broader set of monocots or other plants.

“Comparative genomics is an important method for understanding microRNA evolution and diversity and has the potential to tell us when this type of natural antisense-microRNA might have first evolved,” Meyers said.

The research was funded by the National Science Foundation and the U.S. Department of Agriculture. Additionally, UD postdoctoral researcher Dong-Hoon Jeong was partially supported by a Korean Research Foundation Fellowship funded by the Korean government, and doctoral student Shawn Thatcher was supported by a training grant awarded to UD's multidisciplinary Chemistry/Biology Interface Program from the National Institutes of Health.

Tracey Bryant | EurekAlert!
Further information:
http://www.udel.edu

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>