Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chips could speed up detection of livestock viruses

31.03.2008
Some of the worst threats to farm workers and farm animals such as bird flu, foot-and-mouth disease and other emerging viruses could soon be quickly identified by using a simple screening chip developed by scientists from the Institute for Animal Health, scientists will hear today (Monday 31 March 2008) at the Society for General Microbiology’s 162nd meeting being held this week at the Edinburgh International Conference Centre.

“The last major SARS outbreak – severe acute respiratory syndrome – which started on the border of China and Hong Kong was identified using a microarray chip. Fortunately, because of the rapid identification of the virus it was brought under control, and in spite of its seriousness caused relatively few deaths,” says Dr Paul Britton of the Institute for Animal Health in Compton, near Newbury, Berkshire. “We need a similar way of quickly identifying viruses that attack chickens, cattle, pigs, sheep and other farm animals.”

The scientists have developed a microarray, called a chip, which contains specific small regions of virus genes that react with any viruses in the samples being tested, showing up as coloured spots on glass slides. The method can also be used to see if a sample contains two or more viruses.

“At the moment the common methods for detecting viruses rely on some previous knowledge, such as recognising the clinical signs of a disease,” says Dr Paul Britton. “A system that can be used by almost anyone, and that can quickly and accurately be used to identify the particular virus early on is vital to control these diseases before they spread, and will have much wider applications.”

The new microarray can detect up to 300 different viruses that infect humans and animals including farm livestock, birds, fish and insects. The chip has already been successfully used to detect a coronavirus, similar to SARS, called infectious bronchitis virus, which infects chickens causing major problems for the poultry industry, and also foot-and-mouth disease virus.

“The great advantage of this microarray-based diagnosis is that you don’t even have to know which virus you are looking for. It can be used in the early stages of a disease outbreak to quickly identify the threat to people or animals, and can be used on samples either from clinics or isolated from the environment”, says Dr Paul Britton. “The chip we’ve developed consists of over 2,800 stretches of genes from over 300 viruses from 36 different virus families.”

“At the moment, the cost of the chip is quite high because it is a research tool. However, we hope to make some chips available soon to European members of the Epizone project, a virtual institute that aims to improve research and control epizootic diseases more effectively.”

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>