Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster koa tree growth without adverse ecosystem effects

28.03.2008
U.S. Forest Service scientists with the Institute of Pacific Islands Forestry have completed a study on ways to make high-value koa trees grow faster, while increasing biodiversity, carbon sequestration, scenic beauty and recreation opportunities in native Hawaiían forests.

Acacia koa is a native Hawaiían hardwood tree that traditionally has been prized as a craft and furniture-making wood. Its range has been greatly reduced because of logging and land clearing for agricultural production.

Scientists involved in the study have published their findings in the April edition of Forest Ecology and Management, a scientific journal covering forest ecosystems worldwide. The article is entitled, “Understory Structure in a 23-Year-Old Acacia Koa Forest and Two-Year Growth Responses to Silvicultural Treatments.”

Previous studies have shown that a lack of knowledge about koa tree production has hampered commercial forestry investment efforts in Hawaií.

Scientists in this study began to fill this knowledge gap in 2002 when they started measuring how koa trees respond to the thinning of competing trees and the application of fertilizers. They were also concerned about how the trees and understory plants responded to chemical control of non-native grasses because about 20 percent of endangered plants in Hawaií are understory species found in koa forests.

They found the potential koa crop trees in the test area on the eastern slope of Mauna Loa annually increased their stem diameter at chest height by nearly 120 percent.

In addition, they found the treatments did not adversely affect the growth of native understory plants and non-native grasses did not grow more where tree thinning had occurred. Scientists even found fertilizers reduced the growth of these alien grasses when compared to unfertilized test plots.

The study’s findings also showed the treatments were either neutral or beneficial to forest bird habitat, an important consideration because many trees in koa forests bear fleshy fruits or provide habitat for insects eaten by many Hawaiían birds.

“Our findings indicate the use of low-impact silvicultural treatments in young koa stands not only increases wood production, but also is compatible with maintenance of healthy, intact native understory vegetation,” said Paul

Roland Giller | EurekAlert!
Further information:
http://www.fs.fed.us
http://www.fs.fed.us/psw/hawaii/

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>