Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving water use in growing corn possible, study shows

17.06.2002


Farmers growing corn in the mid-Atlantic region will have a new tool to help them identify appropriate cultural practices for the types of soils in their fields, thanks to research conducted by researchers from Virginia Tech and Colorado State University.


"Soils vary in their ability to hold water," said Mark Alley, professor of crop and soil environmental sciences at Virginia Tech. "If a farmer knows the water-use efficiency of the soils in his field, he has a very important clue on how to manage that field."

Alley developed a formula for accurately determining the water-use efficiency in typical soils in the region. The results of his research were published in the May-June edition of Agronomy Journal. Co-authors of the article are Jon Roygard, a Virginia Tech research associate, and Raj Khosla, assistant professor of soil and crop science at Colorado State University.

Water is the main limiting factor for non-irrigated corn production in the region. The article examines the relationship between no-till corn yields and soil water availability for the purpose of improving water-use efficiency.



Total rainfall in the mid-Atlantic region is generally adequate for corn production, Alley said, but the amount of rain falling on particular fields varies widely. Complicating the hit-or-miss pattern of rainfall is the fact that some soil types have a greater ability to hold water than others.

The research reported in the Agronomy Journal article measured the differences in captured precipitation, crop yields, water used by the corn crop, and water lost to drainage. The research was conducted during the 1998 and 1999 growing seasons in a geologic area near Fredericksburg, Va., known as the northern coastal plain of Virginia.

"Water lost to drainage and runoff is not only lost to the corn crop, but it can also decrease surface and groundwater quality by transporting nutrients and soil into these waters," Alley said. Soils with higher clay contents and greater capacities to retain water produced higher yields, had less runoff and drainage losses, and had higher water-use efficiencies than sandy soils with lower capacity to hold rainfall. The research showed that certain soils can have drainage losses during the growing season.

"These soils that can have drainage losses must either not be planted in corn, or they must be carefully managed," Alley said.

One appropriate method of managing such a field is by using no-till techniques. With no-till practices, farmers disturb the soil as little as possible when planting and tending their crops.

The data from the project provides the basis for computer models that can project the water-use efficiency of corn grown in many different situations in Virginia and surrounding states. Improving the efficiency of water use in corn production can influence the economic and environmental impact on hundreds of thousands of acres in the region, Alley said.


###
For additional information, contact Mark Alley, (540) 231-9777, malley@vt.edu. The article, "Soil Water Dynamics: No-Till Corn Yields and Water Balance in the Mid-Atlantic Coastal Plain," appears in Agronomy Journal, 94:612-623, May-June 2002.

PR CONTACT: Stewart MacInnis (540) 231-5863 macinnis@vt.edu


Mark Alley | EurekAlert

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>