Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Less Can Be More, for Plant Breeders Too

20.03.2008
A new tool for rice genetics allows rice breeders to surgically inactivate genes that confer unwanted properties. The findings are published in this week’s PLoS ONE.

Imagine you are a rice breeder and one day within a large field you discover a plant that has just the characteristics you have been looking for. You happily take your special plant to the laboratory where you find out that the spontaneous, beneficial event was due to inactivation of a single gene.

This is a great observation; however, there are many different strains grown in different parts of the world, well adapted to the particular region they grow in. How can you now transfer the inactivated gene to other strains of rice?

Conventionally, you would have to go through years and years of breeding, until you have successfully transferred that single gene, without affecting all the other genes that are responsible for the target strains being so well adapted to their local environment. Would it not be great, if one could do this faster?

Using inactivated genes for rice breeding might sound far-fetched, but is not unusual. For example, the main change enabling the green revolution in rice resulted from loss of a gene that normally makes rice grow tall (and hence prone to toppling over if a plant makes many heavy rice grains). Thus, transferring inactivated genes is something rice breeders are indeed very much interested in.

Researchers at the Max Planck Institute (MPI) for Developmental Biology in Tübingen, Germany in collaboration with the International Rice Research Institute in the Philippines, have now generated a tool that should greatly speed up this particular aspect of rice breeding: According to a study published in PLoS ONE this week, a team led by Norman Warthmann (MPI) successfully demonstrated highly specific gene silencing using so-called artificial miRNAs in rice (Oryza sativa).

MicroRNAs are 20-22 bp long RNA molecules. In animals as well as in plants they have important functions in regulating gene activity. In plants, they cause highly specific degradation of sequence-matched messenger RNAs, which encode enzymes, regulatory factors or other proteins. The end effect is that the corresponding gene is silenced. With artificial miRNAs (amiRNAs), this natural silencing pathway can be harnessed to inactivate genes of interest to the breeder, with unprecedented specificity.

Detlef Weigel’s research group at the Max Planck Institute in Tübingen had initially pioneered this technique in the model plant Arabidopsis thaliana. The plethora of potential applications in agriculture now motivated them to try the method in rice. One of the rice genes they targeted is called Eui1. When Eui1 is inactive, the uppermost part of the rice plant and parts of the flowers grow taller and the plants can more easily fertilize neighboring plants, breeders use this genetic trick for hybrid seed production. Originally identified as a spontaneous mutant in a japonica rice variety, the eui1 mutation was introduced into indica varieties by several years of breeding. With an artificial miRNA targeting the Eui1 messenger RNA, the researchers at the International Rice Research Institute obtained within weeks plants with the desired property in two different rice varieties, including the agronomically important indica variety IR64, the most commonly grown strain in South-East Asia. Similarly, the researchers also report successful silencing of two other genes, Pds and SPl11.

Besides allowing the quick transfer of reduced gene function between different varieties, artificial miRNAs also accelerate the initial identification of important genes and the discovery of functions of genes that have not been studied before. Potential applications in rice breeding are manifold and they don’t stop at rice genes. By targeting pathogen-derived genes, for example, it should be possible to enhance virus and insect resistance. In addition, because they act dominantly, they are also perfectly suited for hybrid breeding.

MiRNAs have been found in all plant species examined so far. It should hence be possible to adapt the technique of gene silencing by artificial miRNAs to other crops and it may provide an important new avenue to enhance agronomic performance and nutritional value. Computer software to design the required oligonucleotide sequences and detailed protocols to produce amiRNAs are provided free of charge on the authors’ web site, at http://wmd2.weigelworld.org. Similarly, the artificial miRNA vector is provided free of charge to colleagues.

Rebecca Walton | alfa
Further information:
http://www.plosone.org/doi/pone.0001829
http://wmd2.weigelworld.org

More articles from Agricultural and Forestry Science:

nachricht Robotic weeders: to a farm near you?
10.01.2018 | American Society of Agronomy

nachricht Alfalfa loss? Annual ryegrass is a win
03.01.2018 | American Society of Agronomy

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Novel 3-D printing technique yields high-performance composites

16.01.2018 | Materials Sciences

New application for acoustics helps estimate marine life populations

16.01.2018 | Life Sciences

Fast-tracking T cell therapies with immune-mimicking biomaterials

16.01.2018 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>