Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

All Eyes and Ears on the Corn Genome

17.03.2008
A consortium of researchers led by the Genome Sequencing Center (GSC) at Washington University in St. Louis, Mo., announced today the completion of a draft sequence of the corn genome.

In the fall of 2005 the NSF, in partnership with the U.S. Department of Agriculture (USDA) and the Department of Energy (DOE), awarded $32 million to two projects to sequence the corn genome. The goal of the project led by the Washington University GSC is to develop a map-based genome sequence for the B73 inbred line of corn.

This groundbreaking sequencing project was funded by the NSF under the auspices of the National Plant Genome Initiative (NPGI). The initiative, which began in 1998, is an ongoing effort to understand the structure and function of all plant genes at levels from the molecular and organismal, to interactions within ecosystems. NPGI's focus is on plants of economic importance and plant processes of potential economic value. Sequencing the corn genome is one of the major goals of the current initiative.

"Corn is one of the most economically important crops for our nation," said NSF Director, Arden L. Bement, Jr. "Completing this draft sequence of the corn genome constitutes a significant scientific advance and will foster growth for the agricultural community and the economy as a whole."

According to the USDA, more than 80 million acres of land in the United States is devoted to growing corn, accounting for more than 90 percent of the total value of feed grain.

"Corn is a vitally important crop," said Rick Wilson, lead investigator and director of the GSC. "Scientists will now be able to accurately and efficiently probe the genome to develop new varieties of corn that increase crop yields and resist drought and disease. The information we glean from the corn genome is also likely to be applicable to other grains, such as rice, wheat and barley."

Sequencing the corn genome has been an immense and daunting task. At 2.5 billion base pairs covering 10 chromosomes, this genome's size is comparable to that of the human genome. Corn also has one of the most complex genomes of any known organism and is one of the most challenging genomes sequenced to date. The draft sequence will allow researchers to begin to uncover the functional components of individual genes as well as develop an overall picture of the genome organization. Completing the draft sequence, which covers about 95 percent of the genome, is an important milestone on the way to refining the complete genome sequence.

"Creating a completed draft of the corn genome brings us one step closer to our goal of understanding the functional genetic components that influence hybrid vigor, drought and pest resistance, and asexual plant reproduction or apomixis - all special traits that make corn valuable," said James Collins, head of the Biological Sciences Directorate at the NSF.

The National Corn Growers Association, a strong supporter of the sequencing project and an advocate of the NPGI, notes that elucidating the complete sequence and structure of all corn genes, associated functional sequences and their locations on corn's genetic and physical map, has many potential benefits. These include: creating a model for other major genome sequencing projects, enhancing the efficiency of modern corn breeding programs, increasing understanding of corn's important agronomic traits, and strengthening the physical and intellectual scientific processes of the genetic research community.

Pam Johnson, chairman of the Research and Business Development Action Team for the National Corn Growers Association, adds, "This effort is especially critical at this time in history, when the growing global population looks to corn and other plants to supply food, feed, bioenergy and biobased materials. It is time to learn the language of corn as a model that has great potential and economic significance."

Collaborators contributing to the GSC corn genome research include: Rod Wing from the University of Arizona; W. Richard McCombie, Robert Martienssen, Doreen Ware, and Lincoln Stein from Cold Springs Harbor Laboratory; Patrick Schnable and Srinivas Aluru from Iowa State University; and Richard Wilson and Sandy Clifton from Washington University.

-NSF-

Media Contacts
Lily Whiteman, NSF (703) 292-8070 lwhitema@nsf.gov
Program Contacts
Jane Silverthorne, NSF (703) 292-8470 jsilvert@nsf.gov
Erin (Liz) Lawrence, NSF (703) 292-8997 elawrenc@nsf.gov
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of $5.92 billion. NSF funds reach all 50 states through grants to over 1,700 universities and institutions. Each year, NSF receives about 42,000 competitive requests for funding, and makes over 10,000 new funding awards. The NSF also awards over $400 million in professional and service contracts yearly.

Lily Whiteman | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>