Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Wageningen scientist discovers genes that increase yield on marginal soils

Genetically modified plants can be developed that perform significantly better than existing varieties in dry and saline soils. This is the conclusion of the doctorate thesis, to be defended by Shital Dixit at Wageningen University on March 14. Dixit discovered genes that radically enhance the seed production of rice and Arabidopsis plants in dry and saline conditions. This is a major breakthrough considering the rising demands for food and the effects of climate change.

The constantly rising world population and the changing climate will make it essential in the future to cultivate crops in soils where current varieties are unproductive. These so-called marginal soils are often too dry or contain too much salt for cultivation. There are many such areas around the world that are currently not being used for food production, and climate change will lead to huge increases in marginal soils.

Varieties that are less susceptible to drought and/or salt might make it possible to grow crops in marginal soils. Within plant biology, there are mechanisms known which allow plants to protect themselves against the a biotic stress caused by a lack of water or excessive salt. Using the genes which set these mechanisms into action and genetic modification, varieties can be developed which make the most of these mechanisms and are therefore resistant to drought and salt.

Shital Dixit studied the so-called 'HARDY' gene, found in a collection of Arabidopsis mutants in which certain jumping genes increase the activity of genes. Via genetic modification, Dixit developed Arabidopsis plants in which the HARDY gene was more active. She discovered that these genetically modified plants grew better under drought stress than ordinary Arabidopsis plants. The 'HARDY plants' used water more efficiently than normal plants. During desiccation of the soil, the plants were found to vaporise considerably less water while maintaining their growth. When the soil was dry, the HARDY plants lived on and recovered after being given water. They also proved to be resistant against high saline concentrations in the soil.

By means of genetic modification, Dixit managed to transfer the HARDY gene to rice. The HARDY rice plants also turned out to be tolerant to both drought and salt. To Dixit’s surprise, these improved rice plants also performed at least as well in optimal cultivation conditions as ordinary rice plants. The general rule in plant biology is that plants with increased stress tolerance perform worse in optimal conditions than plants without tolerance. This makes the HARDY system even more promising in practical applications.

The HARDY gene encodes for a so-called transcription factor, meaning that a whole chain of genes is regulated. A plant can therefore turn an entire drought or salt tolerance mechanism on or off with a single switch. Dixit also discovered that the SHINE gene, which also encodes for a transcription factor, is capable of making rice tolerant to salt as well.

In her research, Dixit showed how a large group of plants with mutations that cause genes to be more active can be valuable for tracking genes that increase stress tolerance. Dixit selected two mutants from one of these plant groups, which after more detailed research proved to use water more efficiently and to have a tolerance for higher saline concentrations.

Dixit performed her research at Plant Research International (Wageningen UR). It was financed by the WOTRO programme of The Netherlands Organisation for Scientific Research (NWO).

Jac Niessen | alfa
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>