Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wageningen scientist discovers genes that increase yield on marginal soils

13.03.2008
Genetically modified plants can be developed that perform significantly better than existing varieties in dry and saline soils. This is the conclusion of the doctorate thesis, to be defended by Shital Dixit at Wageningen University on March 14. Dixit discovered genes that radically enhance the seed production of rice and Arabidopsis plants in dry and saline conditions. This is a major breakthrough considering the rising demands for food and the effects of climate change.

The constantly rising world population and the changing climate will make it essential in the future to cultivate crops in soils where current varieties are unproductive. These so-called marginal soils are often too dry or contain too much salt for cultivation. There are many such areas around the world that are currently not being used for food production, and climate change will lead to huge increases in marginal soils.

Varieties that are less susceptible to drought and/or salt might make it possible to grow crops in marginal soils. Within plant biology, there are mechanisms known which allow plants to protect themselves against the a biotic stress caused by a lack of water or excessive salt. Using the genes which set these mechanisms into action and genetic modification, varieties can be developed which make the most of these mechanisms and are therefore resistant to drought and salt.

Shital Dixit studied the so-called 'HARDY' gene, found in a collection of Arabidopsis mutants in which certain jumping genes increase the activity of genes. Via genetic modification, Dixit developed Arabidopsis plants in which the HARDY gene was more active. She discovered that these genetically modified plants grew better under drought stress than ordinary Arabidopsis plants. The 'HARDY plants' used water more efficiently than normal plants. During desiccation of the soil, the plants were found to vaporise considerably less water while maintaining their growth. When the soil was dry, the HARDY plants lived on and recovered after being given water. They also proved to be resistant against high saline concentrations in the soil.

By means of genetic modification, Dixit managed to transfer the HARDY gene to rice. The HARDY rice plants also turned out to be tolerant to both drought and salt. To Dixit’s surprise, these improved rice plants also performed at least as well in optimal cultivation conditions as ordinary rice plants. The general rule in plant biology is that plants with increased stress tolerance perform worse in optimal conditions than plants without tolerance. This makes the HARDY system even more promising in practical applications.

The HARDY gene encodes for a so-called transcription factor, meaning that a whole chain of genes is regulated. A plant can therefore turn an entire drought or salt tolerance mechanism on or off with a single switch. Dixit also discovered that the SHINE gene, which also encodes for a transcription factor, is capable of making rice tolerant to salt as well.

In her research, Dixit showed how a large group of plants with mutations that cause genes to be more active can be valuable for tracking genes that increase stress tolerance. Dixit selected two mutants from one of these plant groups, which after more detailed research proved to use water more efficiently and to have a tolerance for higher saline concentrations.

Dixit performed her research at Plant Research International (Wageningen UR). It was financed by the WOTRO programme of The Netherlands Organisation for Scientific Research (NWO).

Jac Niessen | alfa
Further information:
http://www.wur.nl

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>