Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Are existing large-scale simulations of water dynamics wrong?

12.03.2008
In the February issue of Vadose Zone Journal, researchers find that a much smaller spatial resolution should be used for modeling soil water.

Soils are complicated porous media that are highly relevant for the sustainable use of water resources. Not only the essential basis for agriculture, soils also act as a filter for clean drinking water, and, depending on soil properties, they dampen or intensify surface runoff and thus susceptibility to floods. Moreover, the interaction of soil water with the atmosphere and the related energy flux is an important part of modern weather and climate models.

An accurate modeling of soil water dynamics thus has been an important research challenge for decades, but the prediction of water movement, especially at large spatial scales, is complicated by the heterogeneity of soils and the sometimes complicated topography.

Simulation models are typically based on Richards' equation, a nonlinear partial differential equation, which can be solved using numerical solution methods. A prerequisite of most solution algorithms is the partitioning of the simulated region into discrete grid cells. For any fixed region, such as a soil profile, a hill slope, or an entire watershed, the grid resolution is usually limited by the available computer power. But how does this grid resolution affect the quality of the solution?

This problem was explored by Hans-Joerg Vogel from the UFZ - Helmholtz Center of Environmental Research in Leipzig, Germany and Olaf Ippisch from the Institute for Parallel and Distributed Systems of the University of Stuttgart, Germany. The results are published in the article "Estimation of a Critical Spatial Discretization Limit for Solving Richards' Equation at Large Scales," Vadose Zone J. Vol. 7, p. 112-114, in the February 2008 issue of Vadose Zone Journal.

Vogel and Ippisch found that the critical limit for the spatial resolution can be estimated based on more easily available soil properties: the soil water retention characteristic. Most importantly, this limit came out to be on the order of decimeters for loamy soils, and is even lower, on the order of millimeters, for sandy soils. This is much smaller than the resolution used in many practical applications.

This study implies that large-scale simulations of water dynamics in soil may be imprecise to completely wrong. But, it also opens new options for a specific refinement of simulation techniques using locally adaptive grids. The derived critical limit could serve as an indicator that shows where a refinement is necessary. These findings should be transferable to applications such as the simulation of oil reservoirs or models for soil remediation techniques.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at: http://vzj.scijournals.org/cgi/content/full/7/1/112

Vadose Zone Journal, http:/www.vadosezonejournal.org/ is a unique publication outlet for interdisciplinary research and assessment of the biosphere, with a focus on the vadose zone. VZJ is a peer-reviewed, international, online journal publishing reviews, original research and special sections on across a wide range of disciplines that involve the vadose zone, including those that address broad scientific and societal issues. VZJ is published by Soil Science Society of America, with Geological Society of America as a cooperator.

The Soil Science Society of America (SSSA) www.soils.org is an educational organization based in Madison, Wisconsin, which helps its 6,000+ members advance the disciplines and practices of soil science by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.soils.org

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>