Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Are existing large-scale simulations of water dynamics wrong?

12.03.2008
In the February issue of Vadose Zone Journal, researchers find that a much smaller spatial resolution should be used for modeling soil water.

Soils are complicated porous media that are highly relevant for the sustainable use of water resources. Not only the essential basis for agriculture, soils also act as a filter for clean drinking water, and, depending on soil properties, they dampen or intensify surface runoff and thus susceptibility to floods. Moreover, the interaction of soil water with the atmosphere and the related energy flux is an important part of modern weather and climate models.

An accurate modeling of soil water dynamics thus has been an important research challenge for decades, but the prediction of water movement, especially at large spatial scales, is complicated by the heterogeneity of soils and the sometimes complicated topography.

Simulation models are typically based on Richards' equation, a nonlinear partial differential equation, which can be solved using numerical solution methods. A prerequisite of most solution algorithms is the partitioning of the simulated region into discrete grid cells. For any fixed region, such as a soil profile, a hill slope, or an entire watershed, the grid resolution is usually limited by the available computer power. But how does this grid resolution affect the quality of the solution?

This problem was explored by Hans-Joerg Vogel from the UFZ - Helmholtz Center of Environmental Research in Leipzig, Germany and Olaf Ippisch from the Institute for Parallel and Distributed Systems of the University of Stuttgart, Germany. The results are published in the article "Estimation of a Critical Spatial Discretization Limit for Solving Richards' Equation at Large Scales," Vadose Zone J. Vol. 7, p. 112-114, in the February 2008 issue of Vadose Zone Journal.

Vogel and Ippisch found that the critical limit for the spatial resolution can be estimated based on more easily available soil properties: the soil water retention characteristic. Most importantly, this limit came out to be on the order of decimeters for loamy soils, and is even lower, on the order of millimeters, for sandy soils. This is much smaller than the resolution used in many practical applications.

This study implies that large-scale simulations of water dynamics in soil may be imprecise to completely wrong. But, it also opens new options for a specific refinement of simulation techniques using locally adaptive grids. The derived critical limit could serve as an indicator that shows where a refinement is necessary. These findings should be transferable to applications such as the simulation of oil reservoirs or models for soil remediation techniques.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at: http://vzj.scijournals.org/cgi/content/full/7/1/112

Vadose Zone Journal, http:/www.vadosezonejournal.org/ is a unique publication outlet for interdisciplinary research and assessment of the biosphere, with a focus on the vadose zone. VZJ is a peer-reviewed, international, online journal publishing reviews, original research and special sections on across a wide range of disciplines that involve the vadose zone, including those that address broad scientific and societal issues. VZJ is published by Soil Science Society of America, with Geological Society of America as a cooperator.

The Soil Science Society of America (SSSA) www.soils.org is an educational organization based in Madison, Wisconsin, which helps its 6,000+ members advance the disciplines and practices of soil science by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.soils.org

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>