Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Earlier plantings underlie yield gains in northern Corn Belt

U.S. farmers plant corn much earlier today than ever before and it seems to be paying off, at least in the north. Earlier plantings could account for up to half of the yield gains seen in some parts of the northern Corn Belt since the late 1970s, a new study has found.

Midwest corn-growers produce three times more corn today than they did a half-century ago. After finding that farmers also sow seeds around two weeks earlier now than 30 years ago, Chris Kucharik, a scientist with the University of Wisconsin-Madison Nelson Institute for Environmental Studies, set out to discover if earlier plantings – and, thus, longer growing seasons – have contributed to the jump in production.

In a study published online today (Feb. 27) in the Agronomy Journal, Kucharik reports that earlier planting could help explain 20 to 50 percent of the yield gains in the northern Corn Belt states of Nebraska, South Dakota, Minnesota, Iowa, Wisconsin and Michigan since 1979. Meanwhile, the other major factor he considered, climate, seems to have had little impact.

“What I found was that while climate probably has contributed in a small way to the yield trend, the overwhelming contribution has been from this land management change,” says Kucharik, an expert on climate and agriculture with the Nelson Institute’s Center for Sustainability and the Global Environment (SAGE).

As concerns about climate change continue to rise, scientists are struggling to forecast the potential impacts – both positive and negative – on the world’s ability to grow staple crops like corn. This is especially true now, as corn is being increasingly tapped as a feedstock for ethanol production.

While the focus on climate is warranted, Kucharik cautions that scientists can’t lose sight of the role of human decision-making and management practices. His study reveals that farmers aren’t necessarily planting their crops sooner because of warmer springtime temperatures brought on by global warming. Instead, seeds engineered to endure the colder and wetter soils of early spring have likely allowed northern farmers to adopt longer-season – and higher-yield – hybrids.

“Before we jump to conclusions about the impacts of climate change on agriculture, we really need to consider subtle management changes that are taking place and will likely continue to take place in the future,” says Kucharik. “Anytime you deal with a system that’s being managed by people, it makes for a more complicated story.”

Besides climate, researchers have most often attributed skyrocketing yields to technological advances, including mechanization, better crop genetics and pesticides and fertilizers. But after finding in a previous study of U.S. Department of Agriculture data that Midwest farmers put corn into the ground much earlier now, Kucharik began pondering the possible impact of this unexpected shift.

“I thought, if farmers are planting earlier, that means they’re extending the growth period of crops – the amount of time plants have to be photosynthesizing, piling on biomass and making grain,” Kucharik says. “So it made sense to me that this would have contributed in some way to the yield gains we’ve seen over past decades.”

His hypothesis turns out to be true – in part. In Iowa, for example, earlier planting dates and longer growing seasons have potentially contributed 53 percent of the statewide yield gains over the past 30 years, Kucharik found. In Wisconsin, that number is 22 percent, and it ranges between 19 to 31 percent in other northern states.

Yet, even though southern Corn Belt states sow seeds even sooner than their more northerly neighbors, Kucharik saw no relationship in Illinois, Indiana, Kansas, Kentucky, Missouri and Ohio between planting dates and yield.

“There was definitely a split – not all of the states showed this relationship,” says Kucharik. “But for the ones that did, it made sense that they were the ones more likely to benefit from an extension of the growing season” and a switch to longer-season hybrids.

He explains that because southern farmers have been planting long-season, high-yield corn hybrids for decades, expanding the growing season by another two weeks likely offers little advantage. Shorter growing seasons in the north, on the other hand, have historically limited farmers there to short- or mid-season hybrids that produce less grain.

Whether the trend toward earlier planting can continue is another matter, says Kucharik. Northern farmers will eventually hit up against frozen ground and other wintry conditions that will be impossible to overcome.

“Especially as we’re going through this transition of using corn as the initial feedstock for biofuels, are we thinking that this trend in yields is going to continue indefinitely"” he asks. “If planting earlier does contribute significantly in some regions, eventually that effect will wear itself out.”

Chris Kucharik | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>