Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene That Controls Ozone Resistance of Plants Could Lead to Drought-Resistant Crops

29.02.2008
Biologists at the University of California, San Diego, working with collaborators at the University of Helsinki in Finland and two other European institutions, have elucidated the mechanism of a plant gene that controls the amount of atmospheric ozone entering a plant’s leaves.

Their finding helps explain why rising concentrations of carbon dioxide in the atmosphere may not necessarily lead to greater photosynthetic activity and carbon sequestration by plants as atmospheric ozone pollutants increase. And it provides a new tool for geneticists to design plants with an ability to resist droughts by regulating the opening and closing of their stomata—the tiny breathing pores in leaves through which gases and water vapor flow during photosynthesis and respiration.

“Droughts, elevated ozone levels and other environmental stresses can impact crop yields,” said Jean Chin, who oversees membrane protein grants at the National Institute of General Medical Sciences, which partially funded the research. “This work gives us a clearer picture of how plants respond to these kinds of stresses and could lead to new ways to increase their resistance.”

The discovery is detailed in this week’s advance online publication of the journal Nature by biologists at UCSD, University of Helsinki in Finland, University of Tartu in Estonia and the University of the West of England. Last year, the journal published another study by British researchers that found that ozone generated from the nitrogen oxides of vehicle emissions would significantly reduce the ability of plants to increase photosynthesis and store the excess carbon in the atmosphere projected from rising levels of carbon dioxide.

“When ozone enters the leaf through the stomatal pores, it damages the plants photosynthetic machinery and basically causes green leaves to lose their color, a process called chlorosis,” said Julian Schroeder, a professor of biological sciences at UC San Diego and one of the principal authors of the recent study. “Plants have a way to protect themselves and they do that by closing the stomatal pores when concentrations of ozone increase.”

While this protective mechanism minimizes the damage to plants, he adds, it also minimizes their ability to photosynthesize when ozone levels are high, because the stomatal pores are also the breathing holes in leaves through which carbon dioxide enters leaves. The result is diminished plant growth or at least less than one might expect given the rising levels of carbon dioxide.

Some scientists assessing the impacts of rising greenhouse gases had initially estimated that increased plant growth generated from extra carbon dioxide in the atmosphere could sequester much of the excess atmospheric carbon in plant material. But in a paper published last July in Nature, researchers from Britain’s Hadley Centre for Climate Prediction and Research concluded that the damage done to plants by increasing ozone pollution would actually reduce the ability of plants to soak up carbon from the atmosphere by 15 percent which corresponds to about 30 billion tons of carbon per year on a global scale---a dire prediction given that humans are already putting more carbon into the atmosphere than plants can soak up.

The discovery of the ozone-responsive plant gene was made when Jaakko Kangasjarvi and his collaborators at the University of Helsinki in Finland found a mutant form of the common mustard plant, Arabidopsis, that was extremely sensitive to ozone. They next found that this mutant does not close its stomatal pores in response to ozone stress.

“When the mutant plant is exposed to ozone, the leaves lose their dark green color and eventually become white,” said Kangasjarvi, who is also one of the principal authors of the study. “This is because the stomatal pores in the leaves stay open even in the presence of high ozone and are unable to protect the plant.”

The scientists found that the gene responsible for the mutation is essential for the function of what they called a “slow or S-type anion channel.” Anions are negatively charged ions and these particular anion channels are located within specialized cells called guard cells that surround the stomatal pores. The gene was therefore named SLAC1 for “slow anion channel 1.”

Guard cells close stomatal pores in the event of excess ozone or drought. When this gene is absent or defective, the mutant plant fails to close its stomatal pores.

In 1989, Schroeder discovered these slow anion channels in guard cells by electrical recordings from guard cells using tiny micro-electrodes. He predicted that these anion channels would be important for closing the stomatal breathing pores in leaves under drought stress.

“The model we proposed back then was that the anion channels are a kind of electrical tire valve in guard cells, because our studies suggested that closing stomatal pores requires a type of electrically controlled deflation of the guard cells,” he said. “But finding the gene responsible for the anion channels has eluded many researchers since then.”

The latest study shows that the SLAC1 gene encodes a membrane protein that is essential for the function of these anion channels. “We analyzed a lot of mechanisms in the guard cells and, in the end, the slow anion channels were what was missing in the mutant,” said Yongfei Wang, a post doctoral associate in Schroeder’s lab and co-first author of the paper.

The scientists showed that the SLAC1 gene is required for stomatal closing to various stresses, including ozone and the plant hormone abscisic acid, which controls stomatal closing in response to drought stress. Elevated carbon dioxide in the atmosphere also causes a partial closing of stomatal pores in leaves. By contrast, the scientists found, the mutant gene does not close the plants’ stomatal pores when carbon dioxide levels are elevated.

“We now finally have genetic evidence for the electric tire valve model and the gene to work with,” said Schroeder.

Because the opening and closing of stomatal pores also regulates water loss from plants, Schroeder said, understanding the genetic and biochemical mechanisms that control the guard cells during closing of the stomatal pores in response to stress can have important applications for agricultural scientists seeking to genetically engineer crops and other plants capable of withstanding severe droughts.

“Plants under drought stress will lose 95 percent of their water through evaporation through stomatal pores, and the anion channel is a central control mechanism that mediates stomatal closing, which reduces plant water loss,” he said.

The study was financed by grants from the National Science Foundation and the National Institute of General Medical Sciences.

Kim McDonald | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>