Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Boron, Essential For The Growth Of Plants And Animals

27.02.2008
A research group from the biology department of the Universidad Autónoma de Madrid has proven that boron, although only required in tiny doses, is essential for organogenesis in plants.

Research on the biological role of boron (B), a chemical element described almost a century ago as required in small quantities to maintain just the structure of plants, has given more relevance to its importance as an essential element for embryonic development and organogenesis in plants and animals.

Only a few of Earth's naturally occurring chemical elements make up living matter. Just six of them - carbon, hydrogen, nitrogen, oxygen, phosphorous and sulphur - make up for 99% of all living tissues. Nevertheless, other dietary minerals or trace elements are still crucial for all vital functions even if this may be in extremely low dosages. Some of these, such as iron, copper, cobalt, zinc or manganese, are required by all living forms and others are only associated with some groups, mainly because research has not been extended to include a wider range of living organisms.

Such is the case with boron (B), proven essential for the structure of plants in 1923 (Warington. Annals of Botany, Vol. 37: 629–672; 1923). Its activity depends on its presence as borate ion H4BO4- with the capacity to form bonds with molecules such as polysaccharides, glycoproteins or glycolipids. In this way, borate acts as a molecular staple that gives stability and functionality to biomolecules like pectins that make up the cellular wall of most higher terrestrial plants, or glycolipids of the bacterial cell wall (Bolaños et al. Plant, Physiology and Biochemistry, Vol. 42: 907–912; 2004). It has not been considered essential in animals, but nonetheless the disadvantages of a boron deficient diet, such as its negative effects on bone calcification, have already been studied. More recently, additional consequences on embryo development in fish and amphibians have been described where cellular proliferation lacks the differentiation required for the formation of tissues and organs, thereby demonstrating a failure in cellular signalling. Achieving a boron deficiency for experimentation in animals is very complicated, which makes the investigation more difficult.

Working with root nodules of legumes, which were the result of a complex and well controlled development procedure produced by the symbiotic interaction between nitrogen fixing bacteria (Rhizobium) and the plant, the research team managed by profesors Ildefonso Bonilla and Luis Bolaños (Biology Dep, UAM) have confirmed the necessity of borate for the stability of glycoproteins in the cellular membrane Plant, Cell & Environment, Vol. 30:1436–1443; 2007). Boron deficiency causes a lack of glycoproteins in these very membranes, leading to the same development alteration as in the case of amphibians and fish - an extensive cellular proliferation but no subsequent differentiation of tissue which manifests as small tumour structures in the legumes roots. Coinciding with these investigations, it has been described that the use of boric acid H3BO3 inhibits the cellular proliferation of some prostate and breast cancers (Meacham et al., en: Advances in Plant and Animal Boron Nutrition, Pp: 299-306; Springer 2007).

With this in mind, Doctors Bonilla and Bolaños have proposed a model describing the need for proper boron nutrition in animals too. (Plant, Signaling & Behavior, Vol. 3; 2008), This model is based on the role of the dietary element as an stabilising factor for membrane glycoproteins involved in the communication between cells and necessary for the regulation of development procedures and whose lack causes an abnormal cellular proliferation processes.

Oficina de Cultura Científica | alfa
Further information:
http://www.uam.es

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>