Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compost can turn agricultural soils into a carbon sink, thus protecting against climate change

25.02.2008
Applying organic fertilizers, such as those resulting from composting, to agricultural land could increase the amount of carbon stored in these soils and contribute significantly to the reduction of greenhouse gas emissions, according to new research published in a special issue of Waste Management & Research (Special issue published today by SAGE).

Carbon sequestration in soil has been recognized by the Intergovernmental Panel on Climate Change and the European Commission as one of the possible measures through which greenhouse gas emissions can be mitigated.

One estimate of the potential value of this approach – which assumed that 20% of the surface of agricultural land in the EU could be used as a sink for carbon – suggested it could constitute about 8.6% of the total EU emission-reduction objective.

“An increase of just 0.15% in organic carbon in arable soils in a country like Italy would effectively imply the sequestration of the same amount of carbon within soil that is currently released into the atmosphere in a period of one year through the use of fossil fuels,” write Enzo Favoino and Dominic Hogg, authors of the paper.

“Furthermore, increasing organic matter in soils may cause other greenhouse gas-saving effects, such as improved workability of soils, better water retention, less production and use of mineral fertilizers and pesticides, and reduced release of nitrous oxide.”

However, capitalizing on this potential climate-change mitigation measure is not a simple task. The issue is complicated by the fact that industrial farming techniques mean agriculture is actually depleting carbon from soil, thus reducing its capacity to act as a carbon sink.

According to Hogg and Favoino, this loss of carbon sink capacity is not permanent. Composting can contribute in a positive way to the twin objectives of restoring soil quality and sequestering carbon in soils. Applications of organic matter (in the form of organic fertilizers) can lead either to a build-up of soil organic carbon over time, or a reduction in the rate at which organic matter is depleted from soils. In either case, the overall quantity of organic matter in soils will be higher than using no organic fertilizer.

“What organic fertilizers can do is reverse the decline in soil organic matter that has occurred in relatively recent decades by contributing to the build-up in the stable organic fraction in soils, and having the effect, in any given year, of ensuring that more carbon is held within the soil,” they explain.

But calculating the value of this technique to climate change policies is complicated. To refine previous calculations and to take account of the positive and negative dynamics of carbon storage in soil, Favoino and Hogg modelled the dynamics of compost application and build-up balancing this with mineralization and loss through tillage.

Their results suggest that soils where manure was added have soil organic carbon levels 1.34% higher than un-amended soils, and 1.13% higher than soils amended with chemical fertilizers, over a 50-year period. “This is clearly significant given the evaluations reported above regarding carbon being lost from soils, and the increasing amount of carbon dioxide in the atmosphere,” they say.

Mithu Mukherjee | alfa
Further information:
http://www.sagepub.co.uk

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>