Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major scientific push to tackle agricultural productivity and food security in developing world

22.02.2008
£7M of new research is being launched today to tackle some of the most damaging and widespread pests, diseases and harsh environmental conditions which can devastate crop yields across the developing world.

Three out of four poor people in developing countries live in rural areas and most depend on agriculture for their livelihoods. Increasing agricultural productivity will benefit millions through higher incomes, more and cheaper food, and more jobs in both rural and urban areas.

The Biotechnology and Biological Sciences Research Council (BBSRC) and the Department for International Development (DFID) are unveiling 12 new projects as part of their flagship initiative - Sustainable Agriculture Research for International Development (SARID) - to harness the UK's world class bioscience research base to address the challenges of agriculture and food security in developing countries.

The new projects will look at how a variety of crops - from maize to coconuts, rice to bananas - respond at a molecular level to hostile factors including attack by pests and diseases as well as inclement conditions. Their findings will offer new and exciting opportunities to develop crops better able to survive and thrive in their changing environments. Such advances in crop science could revolutionise the way farmers are able to farm across the developing world and have a significant impact on reducing poverty.

Commenting on the new research, Gareth Thomas, Parliamentary Under Secretary of State for International Development and Business, Enterprise and Regulatory Reform, said: "Investing in science and research is essential to provide poor farmers with the seeds, knowledge and tools they need to make a better life for themselves. This research, bringing together UK, African and Asian scientists, has the potential to revolutionise farming in the developing world and reduce global poverty. The UK is delighted to support this initiative."

Welcoming the new research, Ian Pearson, Minister for Science and Innovation, said: "This is a true demonstration of how scientific research can help find solutions to the major challenges facing the world and improve the quality of life for millions in developing countries."

BBSRC Interim Chief Executive, Steve Visscher, said: "Bioscience research can make a vital contribution to improving sustainable agriculture across the globe. These projects will build on the world-leading research on fundamental plant science and plant disease in the UK and apply this to crops of importance in the developing world, increasing yields and helping to alleviate the suffering of millions living in poverty."

All of the projects unveiled today involve unique partnerships between UK scientists and researchers from institutions in Africa, Asia and elsewhere.

Examples include:

Halting armyworm rampage with biological pesticide - the African armyworm is a major migratory insect pest, which feeds voraciously on cereal crops. Using a radical new solution, researchers from the UK, Canada and Tanzania will investigate the use of a naturally occurring virus in armyworms with a view to using it as a biological pesticide.

Defeating witchweed famine threat - subsistence crops relied on by billions are at constant risk of attack by the noxious parasitic plant witchweed. Researchers the UK, India and Senegal are identifying ways to protect the livelihoods of some of the world's poorest farmers by developing resistant crops.

Improving food security for 500M people - Pearl millet provides food security for half a billion people in Africa and Asia. The crop is well adapted to harsh environments but climate change is threatening the predictable yields that subsistence farmers rely on. Scientists from the UK, India and Ghana will work to improve pearl millet's genetic tolerance to drought.

Fighting nematode worms with fungus - Root-knot nematodes are microscopic worms that feed on plant roots, stunting their growth and causing yield losses of US$70 billion each year. UK scientists and their Kenyan colleagues are harnessing a natural soil fungus to destroy the worms' eggs reducing damage to crops.

Reducing arsenic levels in rice - arsenic contamination of rice paddies is a major problem in many parts of Asia, caused by irrigation with arsenic contaminated groundwater, pollution resulting from base and precious metal mining and the use of municipal solid waste as fertilizer. Researchers from the UK, India, Bangladesh and China will look at types of rice which have lower take-up levels of inorganic arsenic to unravel the genetic basis for this desirable characteristic.

BBSRC and DFID announced the SARID initiative in 2006 to foster high-quality research that will contribute to achieving the Millennium Development Goals for combating the eight major problems faced by the developing world including poverty and starvation.

The research announced today is the first from this initiative. A second grant round, focussing on animal health will be announced later in 2008.

Press Office | alfa
Further information:
http://www.bbsrc.ac.uk
http://www.bbsrc.ac.uk/media/releases/2008/080221_sarid.html

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>