Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purging the plantain pests in Africa

22.02.2008
A tiny pest threatening the staple diet of millions in Africa could soon be eradicated in a project announced today, bringing together plant experts from Leeds and Uganda.

Professor Howard Atkinson and Dr Peter Urwin from the University of Leeds’ Faculty of Biological Sciences have been awarded £500,000 through the £7 million Sustainable Agriculture Research for International Development (SARID) scheme launched today by the Department for International Development (DFID) and the Biotechnology and Biological Sciences Research Council (BBSRC).

The Leeds project is one of 12 funded under the scheme, all of which involve unique partnerships between UK scientists and researchers from institutions in Africa, Asia and elsewhere.

Plantain and other varieties of cooking banana provide 30 per cent of the daily calorific intake of Ugandans and many of Africa’s other poorest populations. But up to half of the plantain harvest is lost through nematode worms feeding on and damaging their roots. The Leeds researchers will work with colleagues from the International Institute of Tropical Agriculture in Uganda to find a solution to the problem.

The partnership will use the latest biotechnology techniques to develop pest resistance in plantains, which can then be made available to growers throughout Africa. A major part of the 3-year project is ensuring that the new resistant plantains can be produced across Africa – where growing conditions can vary enormously.

Professor Atkinson says: “The impact of this parasite can be overwhelming for families and communities that rely on plantain for their staple diet. Already nearly one third of the sub-Saharan African population is severely undernourished, so poor crop yields or worse - crop failure - can be catastrophic for subsistence farmers.”

“If we can make these crops more reliable through resistance to the nematode, not only will it secure dietary intake, but some land will also be freed up for nutritious crops like beans - and surplus plantains could be sold at market to give some income to the poorest of communities," he says.

However, like the sweet dessert bananas we are more familiar with, plantains are sterile plants that produce no seeds, limiting the use of conventional plant breeding to build resistance to the pest over successive generations.

Professor Atkinson says: “It makes the job tougher. Plantains are re-planted using offshoots. This means that every plant is a genetically identical clone of the original - and a pest that affects plantains is capable of affecting every single plant.”

“There are four or five types of problematic worm that live in the soil and we’re looking to find a way to control them in a ‘one size fits all’ approach. Our Ugandan partners have developed a technology to add genes into plantains and this, combined with our leading knowledge of nematodes, makes us hopeful that we can target this technique to inhibit the unique digestive process of the worms and stop their destruction, without affecting surrounding plants or other animals in the soil.“

Jo Kelly | alfa
Further information:
http://www.bbsrc.ac.uk/media/briefings/sarid.pdf
http://www.leeds.ac.uk/media/press_releases/current/plantains.htm

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

50th Anniversary at JULABO GmbH

23.10.2017 | Press release

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>