Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purging the plantain pests in Africa

22.02.2008
A tiny pest threatening the staple diet of millions in Africa could soon be eradicated in a project announced today, bringing together plant experts from Leeds and Uganda.

Professor Howard Atkinson and Dr Peter Urwin from the University of Leeds’ Faculty of Biological Sciences have been awarded £500,000 through the £7 million Sustainable Agriculture Research for International Development (SARID) scheme launched today by the Department for International Development (DFID) and the Biotechnology and Biological Sciences Research Council (BBSRC).

The Leeds project is one of 12 funded under the scheme, all of which involve unique partnerships between UK scientists and researchers from institutions in Africa, Asia and elsewhere.

Plantain and other varieties of cooking banana provide 30 per cent of the daily calorific intake of Ugandans and many of Africa’s other poorest populations. But up to half of the plantain harvest is lost through nematode worms feeding on and damaging their roots. The Leeds researchers will work with colleagues from the International Institute of Tropical Agriculture in Uganda to find a solution to the problem.

The partnership will use the latest biotechnology techniques to develop pest resistance in plantains, which can then be made available to growers throughout Africa. A major part of the 3-year project is ensuring that the new resistant plantains can be produced across Africa – where growing conditions can vary enormously.

Professor Atkinson says: “The impact of this parasite can be overwhelming for families and communities that rely on plantain for their staple diet. Already nearly one third of the sub-Saharan African population is severely undernourished, so poor crop yields or worse - crop failure - can be catastrophic for subsistence farmers.”

“If we can make these crops more reliable through resistance to the nematode, not only will it secure dietary intake, but some land will also be freed up for nutritious crops like beans - and surplus plantains could be sold at market to give some income to the poorest of communities," he says.

However, like the sweet dessert bananas we are more familiar with, plantains are sterile plants that produce no seeds, limiting the use of conventional plant breeding to build resistance to the pest over successive generations.

Professor Atkinson says: “It makes the job tougher. Plantains are re-planted using offshoots. This means that every plant is a genetically identical clone of the original - and a pest that affects plantains is capable of affecting every single plant.”

“There are four or five types of problematic worm that live in the soil and we’re looking to find a way to control them in a ‘one size fits all’ approach. Our Ugandan partners have developed a technology to add genes into plantains and this, combined with our leading knowledge of nematodes, makes us hopeful that we can target this technique to inhibit the unique digestive process of the worms and stop their destruction, without affecting surrounding plants or other animals in the soil.“

Jo Kelly | alfa
Further information:
http://www.bbsrc.ac.uk/media/briefings/sarid.pdf
http://www.leeds.ac.uk/media/press_releases/current/plantains.htm

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>