Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purging the plantain pests in Africa

22.02.2008
A tiny pest threatening the staple diet of millions in Africa could soon be eradicated in a project announced today, bringing together plant experts from Leeds and Uganda.

Professor Howard Atkinson and Dr Peter Urwin from the University of Leeds’ Faculty of Biological Sciences have been awarded £500,000 through the £7 million Sustainable Agriculture Research for International Development (SARID) scheme launched today by the Department for International Development (DFID) and the Biotechnology and Biological Sciences Research Council (BBSRC).

The Leeds project is one of 12 funded under the scheme, all of which involve unique partnerships between UK scientists and researchers from institutions in Africa, Asia and elsewhere.

Plantain and other varieties of cooking banana provide 30 per cent of the daily calorific intake of Ugandans and many of Africa’s other poorest populations. But up to half of the plantain harvest is lost through nematode worms feeding on and damaging their roots. The Leeds researchers will work with colleagues from the International Institute of Tropical Agriculture in Uganda to find a solution to the problem.

The partnership will use the latest biotechnology techniques to develop pest resistance in plantains, which can then be made available to growers throughout Africa. A major part of the 3-year project is ensuring that the new resistant plantains can be produced across Africa – where growing conditions can vary enormously.

Professor Atkinson says: “The impact of this parasite can be overwhelming for families and communities that rely on plantain for their staple diet. Already nearly one third of the sub-Saharan African population is severely undernourished, so poor crop yields or worse - crop failure - can be catastrophic for subsistence farmers.”

“If we can make these crops more reliable through resistance to the nematode, not only will it secure dietary intake, but some land will also be freed up for nutritious crops like beans - and surplus plantains could be sold at market to give some income to the poorest of communities," he says.

However, like the sweet dessert bananas we are more familiar with, plantains are sterile plants that produce no seeds, limiting the use of conventional plant breeding to build resistance to the pest over successive generations.

Professor Atkinson says: “It makes the job tougher. Plantains are re-planted using offshoots. This means that every plant is a genetically identical clone of the original - and a pest that affects plantains is capable of affecting every single plant.”

“There are four or five types of problematic worm that live in the soil and we’re looking to find a way to control them in a ‘one size fits all’ approach. Our Ugandan partners have developed a technology to add genes into plantains and this, combined with our leading knowledge of nematodes, makes us hopeful that we can target this technique to inhibit the unique digestive process of the worms and stop their destruction, without affecting surrounding plants or other animals in the soil.“

Jo Kelly | alfa
Further information:
http://www.bbsrc.ac.uk/media/briefings/sarid.pdf
http://www.leeds.ac.uk/media/press_releases/current/plantains.htm

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>