Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nitrous oxide: definitely no laughing matter

19.02.2008
Farmers, food suppliers, policy-makers, business leaders and environmentalists are joining forces to confront the threat of the ‘forgotten greenhouse gas’ by taking part in an influential new forum at the University of East Anglia (UEA).

Launched on February 22, the Nitrous Oxide Focus Group will engage with many influential organisations including the National Farmers Union, Marks & Spencer, British Sugar, Defra, the Country Land and Business Association and Unilever.

The group will present and explore cutting edge research into the sources and sinks of nitrous oxide in the environment and discuss the prospects of mitigating the release of this destructive gas through re-shaping current policies and practice.

“People are becoming increasingly concerned about the immense problems associated with the unregulated release of this potent greenhouse gas,” said Prof David Richardson, Dean of the Faculty of Science at UEA and co-ordinator of the Nitrous Oxide Focus Group.

“It is very encouraging that so many key figures from agriculture, industry and government are interested in mitigating nitrous oxide emissions by learning more about key research questions that are currently being addressed with government funding by groups within UEA, along with collaborating research groups across the UK and Europe.”

Better known as ‘laughing gas’, nitrous oxide (N2O) accounts for 9 per cent of all greenhouse gases, yet is 300 times more potent than carbon dioxide (CO2). As a result its longevity in the atmosphere provides a potentially more damaging legacy than CO2.

Agriculture accounts for around 70 per cent of N2O emissions. The sources are mainly from soil micro-organisms that make N2O from nitrogen-rich fertilisers added to soils to maximise crop yields. Other significant biological sources of N2O come from the wastewater treatment industries where the greenhouse gas is again produced from micro-organisms.

The launch of the new consortium is underpinned by more than five years of interdisciplinary research at UEA and comes as significant new research on an N2O-generating enzyme from a widespread soil bacterium is published.

The research was done in collaboration with the University of Stockholm and largely carried out by UEA graduate Faye Thorndycroft under the guidance of Prof Richardson and Dr Nick Watmough.

Press Office | alfa
Further information:
http://www.uea.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Cascading use is also beneficial for wood
11.12.2017 | Technische Universität München

nachricht The future of crop engineering
08.12.2017 | Max-Planck-Institut für Biochemie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>