Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New method for measuring biodiversity - How individual species help structure the biodiversity of tropical rainforests

German and Sri Lankan researchers have developed a new method for measuring the impacts of species on local biodiversity. It makes it possible to determine whether a certain species promotes or suppresses species diversity.

The new method extends a procedure familiar to biologists that involves investigating species numbers in relation to area (the species-area relationship, or SAR), by adding sophisticated statistical methods so that it can be used to describe the role of individual species in their impact on biodiversity.

This individualised method (‘individual species-area relationship’, or ISAR) makes it easier to identify key species. "We are effectively looking at diversity in the ecosystem through the glasses of the individual species," says co-author Dr Andreas Huth of the UFZ. This means that in future it will be easier to understand the role of individual species in ecosystems and to implement targeted protection measures for key species. In addition, the method can be used to investigate better the ecological consequences of changes in land use.

The researchers used their new method to evaluate unique data from two tropical rainforests in Sri Lanka and Panama that are part of a network coordinated by the Center for Tropical Forest Science (CTFS; Within this network, every single tree with a trunk thicker than a pencil has been mapped and monitored for years on about a dozen selected sample plots, some as large as 50 hectares, in tropical rainforests around the globe. The researchers compared in their study around 40 000 larger trees in the tropical rainforest on Barro Colorado Island, Panama, with those in the Sinharaja World Heritage Site in Sri Lanka.

To their surprise, more than two third of all species did not leave identifiable signatures on spatial diversity. The other tree species had an impact on local biodiversity only in their immediate surroundings, within a radius of up to 20 metres, but not on a large scale. These findings support the much-debated ‘neutral theory’, according to which species characteristics are unimportant for certain community attributes and play only a subsidiary role in the stability and diversity of ecosystems. The study reveals that the two tropical forests lacked any key species structuring species diversity at larger scales, suggesting that "balanced" species–species interactions may be a characteristic of these species rich forests. Dr Thorsten Wiegand says, "Biodiversity researchers have not been able to agree on which processes permit a high level of species diversity to emerge, and which processes keep these complicated systems stable".

On the research plot in Panama there were lots of ‘repellent’ species. By contrast, the one in Sri Lanka is dominated by ‘attractor’ species, i.e. species that promote biodiversity. "It is not yet known why these two tropical rainforests are so different in this regard" say Savitri Gunatilleke and her husband Nimal, both professors at the University of Peradeniya, "but our method is a leap forward in an understanding of the complexities of the origin and maintenance of species richness in tropical forests". After all, the method was being used for the first time. "We first used the new method in tropical rainforests, but it is universally applicable and can be used for plants in all ecosystems," says Dr Andreas Huth of the UFZ. The new method closes a gap between rather more crude descriptions of biodiversity (for the whole ecosystem) and extremely detailed analyses (interactions between individual species). In future then, the new method can also be combined with the forest simulation models already developed at the UFZ.

Tilo Arnhold

Doris Boehme | alfa
Further information:

More articles from Agricultural and Forestry Science:

nachricht “How trees coexist” – new findings from biodiversity research published in Nature Communications
21.03.2018 | Technische Universität Dresden

nachricht Earlier flowering of modern winter wheat cultivars
20.03.2018 | Georg-August-Universität Göttingen

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>