Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eat up all of your Brussels sprouts - unless you're an aphid

08.02.2008
Aphids that eat Brussels sprouts are smaller than normal and live in undersized populations, which has a negative knock-on effect up the food chain according to new research published today (8 February) in Science.

The study shows for the first time that the nutritional quality of plant food sources for herbivores has a far-reaching impact on an ecosystem as a whole, potentially impeding important functions that the ecosystem performs, such as the natural predation and control of agricultural pests.

The scientists compared aphids living on sprouts to aphids living on wild cabbages in a field experiment which took place on a farm in theNetherlands. They could see that the sprouts were of a lower nutritional value for aphids than the cabbages, because the aphids feeding on them were smaller in size, and the number of aphids living on them was fewer.

They then traced the effects up through the food chain to discover that the implications of poor nutritional quality in plants spread throughout the extended network of feeding relationships in an ecosystem known as a food web. This means that the sprouts affect not only the herbivore aphids that eat them, but also the primary parasitoid wasp predators that mummify and eat the aphids, and the secondary parasitoid wasps that in turn eat the primary parasitoid wasps.

The scientific team made this discovery by analysing the food webs associated with both types of plants. They found that food webs based on sprout-eating aphids are less complex and involve a less diverse network of predators than those food webs based on higher quality plants like wild cabbage.

This is because larger, cabbage-eating aphids produce larger primary parasitoid predators, which in turn attract more of the opportunistic generalist feeders among the secondary parasitoids, leading to a greater diversity of species and complexity in the ecosystem. This shows that plant quality indirectly influences the foraging decisions taken by individuals higher up the food chain which ultimately determines the structure of the food web.

One of the paper's authors, Dr Frank Van Veen from Imperial College London's NERC Centre for Population Biology, explains why this is important:

"The diversity and complexity of food webs have long been seen as good indicators of how well an ecosystem is functioning, and how stable it is, but until now we had very little idea of the processes that determine diversity and complexity. Our study has shown that changing just one element, in this case plant quality, leads to a cascade of effects that impact on predators across the food web.

"If we are to predict how environmental change is going to affect ecosystems and the functions they perform, an important part of the puzzle is to understand the mechanisms by which an effect on one species propagates through the complex network of interacting species that make up an ecosystem."

Dr Van Veen adds that their research has no implications for human sprout consumption: "Our aphid study certainly does not mean sprouts aren't good for humans to eat - our nutritional requirements differ enormously from those of insects."

The research was jointly led by scientists at Wageningen University in the Netherlands and Imperial College London, and was funded by the Netherlands Organisation for Scientific Research (NWO) and the UK Natural Environment Research Council.

Danielle Reeves | alfa
Further information:
http://www.imperial.ac.uk

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>