Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene guards grain-producing grasses so people and animals can eat

04.02.2008
Purdue University and USDA-Agricultural Research Service scientists have discovered that a type of gene in grain-producing plants halts infection by a disease-causing fungus that can destroy crops vital for human food supplies.

The research team is the first to show that the same biochemical process protects an entire plant family - grasses - from the devastating, fungal pathogen. The naturally occurring disease resistance probably is responsible for the survival of grains and other grasses over the past 60 million years.

The findings will stimulate the design of new resistance strategies against additional diseases in grasses and other plants. Grasses' ability to ward off pathogens is a major concern because grasses, including corn, barley, rice, oats and sorghum, provide most of the calories people consume, and some species also increasingly are investigated for conversion into energy.

A resistance gene, first discovered in corn, and the fungal toxin-fighting enzyme it produces apparently provide a biological mechanism that guards all grass species from this fungus, said Guri Johal, a Purdue associate professor of botany and plant pathology. He is senior and corresponding author of the study published this week (Jan. 28-Feb. 1) in Early Edition, the online version of the Proceedings of the National Academy of Sciences. It will appear in the Feb. 5 print edition.

"We think that if the gene Hm1 had not evolved, then grasses would have had a hard time surviving, thriving or, at least, the geographic distribution would have been restricted," Johal said. "This plant resistance gene is durable and is indispensible against this fungal group, which has the ability to destroy any part of the plant at any stage of development."

In 1943 a related fungus decimated rice crops in Bengal, causing a catastrophic famine in which 5 million people starved. The same fungal group was responsible for the other two recorded epidemics in grasses in the 20th century, including the 1970 southern corn leaf blight that destroyed 15 percent of the U.S. corn crop.

The study, part of an effort to prevent future crop crises, also provides new information about the evolution of plant-pathogen interaction, report Johal and his colleagues, including USDA-Agricultural Research Service researcher Steven Scofield and plant geneticist Michael Zanis. The findings have implications for continued survival and further evolution of grasses, which also include rye, bluegrass, reed canary grass and bamboo.

Johal and the research team began this study because they had a hunch that a genetic mechanism similar to the one protecting corn from a fungus, called Cochliobolus carbonum race 1 (CCR1), might also be at work in other grasses. They knew that all grasses had genes similar, or homologous, to Hm1, but not whether the same genetic mechanism was providing resistance against the fungus and its toxin.

To determine if the same biochemical processes were at work to prevent grass susceptibility to the fungus family, Johal and his team shut off the Hm1 homologue in some barley plants. Next, they infected the test barley with fungus.

In barley that no longer had a functioning Hm1 homologous gene, the fungus, with the help of its toxin, caused disease in the plant. The resulting tissue damage on the barley leaves was typical of maize leaf blight symptoms in corn.

Some of the research barley, which had a functioning Hm1 gene, was inoculated with the fungus. The results showed that the resistance mechanism was the same as the one that prevents the fungus' disease infection in corn.

As in corn, the Hm1-like gene produced an enzyme that disarmed the fungus' disease-causing toxin. The detoxification isolated the infection at the site where the fungus invaded. The research with the barley also showed that, as in corn susceptible to the fungus, infection isolation occurs if the fungus doesn't produce the toxin.

Now that the researchers know that Hm1 homologues in all grasses apparently trigger the same resistance to the fungal family, the next step will be to investigate how the fungal toxin facilitates disease when not degraded by Hm1.

Scofield is a scientist in the Purdue-based USDA-ARS Crop Production and Pest Control Research Unit and a Purdue adjunct assistant professor. Zanis is an assistant professor in the Purdue Department of Botany and Plant Pathology. The other researchers involved in the study were Anoop Sindhu, co-lead author, former botany and plant pathology postdoctoral research assistant and now an Iowa State University assistant scientist; Satya Chintamanani, co-lead author and a postdoctoral research assistant; and Amanda Brandt, a USDA-ARS research technician.

Purdue University, the National Science Foundation and the USDA-Agricultural Research Service provided funding for this research.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu
Sources: Guri Johal, (765) 494-4448, gjohal@purdue.edu
Steven Scofield, (765) 494-3674, scofield@purdue.edu

Susan A. Steeves | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>