Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using DNA, scientists hunt for the roots of the modern potato

31.01.2008
More than 99 percent of all modern potato varieties planted today are the direct descendents of varieties that once grew in the lowlands of south-central Chile. How Chilean germplasm came to dominate the modern potato-which spread worldwide from Europe-has been the subject of a long, contentious debate among scientists.

While some plant scientists have maintained that Chilean potatoes were the first to be planted in Europe, a more widely accepted story holds that European potatoes were originally descended from plants grown high in the Andes mountains between eastern Venezuela and northern Argentina. According to this theory, Andean potatoes were wiped out during the Great Irish Potato Famine, the 19th-century late-blight epidemic that devastated potato fields across Europe, initiating the import of Chilean varieties to re-establish the crop.

In a report published today in the American Journal of Botany, University of Wisconsin-Madison researchers Mercedes Ames and David Spooner say both theories are wrong. By analyzing the DNA of historical potato specimens, the researchers found that both Chilean and Andean potatoes were grown in Europe decades before and decades after the famine, the first direct evidence that the potatoes were grown simultaneously in Europe.

"Basically, we found that the Andean potatoes got to Europe first, around 1700. However, Chilean potatoes were starting to get popular there 34 years before the late blight epidemic," says Ames, a graduate student in UW-Madison's plant breeding and plant genetics program. The results also show that Andean potatoes grew as late as 1892 in Europe, proving they weren't polished off by the late blight epidemic-and that they grew side by side with Chilean potatoes for many decades before the Chilean types became dominant.

To start the project, which was funded by the National Science Foundation, Ames visited herbaria throughout Europe in search of early potato specimens. She requested hole-punch sized samples of dried leaf tissue from appropriate specimens be sent to Madison for study, eventually ending up with material from 64 potato plants grown between 1700 and 1910.

"Some of these samples were over 300 years old and not ideally preserved," says Spooner, a professor of horticulture and USDA researcher who is the paper's corresponding author. "It took considerable innovation for Mercedes to work out the correct technique to get DNA from them."

After successfully extracting DNA from 49 samples, Ames analyzed each using a DNA marker that distinguishes between upland Andean and lowland Chilean potato types. The result is a biochemical record of ancestry, which Spooner says adds hard evidence to a debate often premised on guesswork.

"The problem with these two theories is that they rely on inferences based on the morphology of old plant samples, as well as inferences based on historical records about day-length adaptation, shipping routes, and the role of the late blight epidemic," he says. "Our work is the first direct evidence-as opposed to the inferential evidence used in prior studies-on the origin of the European potato because the herbarium specimens we used are like fossils."

Spooner notes that this type of analysis could help set the record straight for many other crop species. "Potato is one of the prominent stories in crop evolution books," says Spooner. "Because of Mercedes's work, they're going to have to rewrite the textbooks."

David Spooner | EurekAlert!
Further information:
http://www.usda.gov

More articles from Agricultural and Forestry Science:

nachricht New insight into why Pierce's disease is so deadly to grapevines
11.06.2018 | University of California - Davis

nachricht Where are Europe’s last primary forests?
29.05.2018 | Humboldt-Universität zu Berlin

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

New cellular pathway helps explain how inflammation leads to artery disease

22.06.2018 | Life Sciences

When fluid flows almost as fast as light -- with quantum rotation

22.06.2018 | Physics and Astronomy

Exposure to fracking chemicals and wastewater spurs fat cell development

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>