Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Using DNA, scientists hunt for the roots of the modern potato

More than 99 percent of all modern potato varieties planted today are the direct descendents of varieties that once grew in the lowlands of south-central Chile. How Chilean germplasm came to dominate the modern potato-which spread worldwide from Europe-has been the subject of a long, contentious debate among scientists.

While some plant scientists have maintained that Chilean potatoes were the first to be planted in Europe, a more widely accepted story holds that European potatoes were originally descended from plants grown high in the Andes mountains between eastern Venezuela and northern Argentina. According to this theory, Andean potatoes were wiped out during the Great Irish Potato Famine, the 19th-century late-blight epidemic that devastated potato fields across Europe, initiating the import of Chilean varieties to re-establish the crop.

In a report published today in the American Journal of Botany, University of Wisconsin-Madison researchers Mercedes Ames and David Spooner say both theories are wrong. By analyzing the DNA of historical potato specimens, the researchers found that both Chilean and Andean potatoes were grown in Europe decades before and decades after the famine, the first direct evidence that the potatoes were grown simultaneously in Europe.

"Basically, we found that the Andean potatoes got to Europe first, around 1700. However, Chilean potatoes were starting to get popular there 34 years before the late blight epidemic," says Ames, a graduate student in UW-Madison's plant breeding and plant genetics program. The results also show that Andean potatoes grew as late as 1892 in Europe, proving they weren't polished off by the late blight epidemic-and that they grew side by side with Chilean potatoes for many decades before the Chilean types became dominant.

To start the project, which was funded by the National Science Foundation, Ames visited herbaria throughout Europe in search of early potato specimens. She requested hole-punch sized samples of dried leaf tissue from appropriate specimens be sent to Madison for study, eventually ending up with material from 64 potato plants grown between 1700 and 1910.

"Some of these samples were over 300 years old and not ideally preserved," says Spooner, a professor of horticulture and USDA researcher who is the paper's corresponding author. "It took considerable innovation for Mercedes to work out the correct technique to get DNA from them."

After successfully extracting DNA from 49 samples, Ames analyzed each using a DNA marker that distinguishes between upland Andean and lowland Chilean potato types. The result is a biochemical record of ancestry, which Spooner says adds hard evidence to a debate often premised on guesswork.

"The problem with these two theories is that they rely on inferences based on the morphology of old plant samples, as well as inferences based on historical records about day-length adaptation, shipping routes, and the role of the late blight epidemic," he says. "Our work is the first direct evidence-as opposed to the inferential evidence used in prior studies-on the origin of the European potato because the herbarium specimens we used are like fossils."

Spooner notes that this type of analysis could help set the record straight for many other crop species. "Potato is one of the prominent stories in crop evolution books," says Spooner. "Because of Mercedes's work, they're going to have to rewrite the textbooks."

David Spooner | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>