Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using DNA, scientists hunt for the roots of the modern potato

31.01.2008
More than 99 percent of all modern potato varieties planted today are the direct descendents of varieties that once grew in the lowlands of south-central Chile. How Chilean germplasm came to dominate the modern potato-which spread worldwide from Europe-has been the subject of a long, contentious debate among scientists.

While some plant scientists have maintained that Chilean potatoes were the first to be planted in Europe, a more widely accepted story holds that European potatoes were originally descended from plants grown high in the Andes mountains between eastern Venezuela and northern Argentina. According to this theory, Andean potatoes were wiped out during the Great Irish Potato Famine, the 19th-century late-blight epidemic that devastated potato fields across Europe, initiating the import of Chilean varieties to re-establish the crop.

In a report published today in the American Journal of Botany, University of Wisconsin-Madison researchers Mercedes Ames and David Spooner say both theories are wrong. By analyzing the DNA of historical potato specimens, the researchers found that both Chilean and Andean potatoes were grown in Europe decades before and decades after the famine, the first direct evidence that the potatoes were grown simultaneously in Europe.

"Basically, we found that the Andean potatoes got to Europe first, around 1700. However, Chilean potatoes were starting to get popular there 34 years before the late blight epidemic," says Ames, a graduate student in UW-Madison's plant breeding and plant genetics program. The results also show that Andean potatoes grew as late as 1892 in Europe, proving they weren't polished off by the late blight epidemic-and that they grew side by side with Chilean potatoes for many decades before the Chilean types became dominant.

To start the project, which was funded by the National Science Foundation, Ames visited herbaria throughout Europe in search of early potato specimens. She requested hole-punch sized samples of dried leaf tissue from appropriate specimens be sent to Madison for study, eventually ending up with material from 64 potato plants grown between 1700 and 1910.

"Some of these samples were over 300 years old and not ideally preserved," says Spooner, a professor of horticulture and USDA researcher who is the paper's corresponding author. "It took considerable innovation for Mercedes to work out the correct technique to get DNA from them."

After successfully extracting DNA from 49 samples, Ames analyzed each using a DNA marker that distinguishes between upland Andean and lowland Chilean potato types. The result is a biochemical record of ancestry, which Spooner says adds hard evidence to a debate often premised on guesswork.

"The problem with these two theories is that they rely on inferences based on the morphology of old plant samples, as well as inferences based on historical records about day-length adaptation, shipping routes, and the role of the late blight epidemic," he says. "Our work is the first direct evidence-as opposed to the inferential evidence used in prior studies-on the origin of the European potato because the herbarium specimens we used are like fossils."

Spooner notes that this type of analysis could help set the record straight for many other crop species. "Potato is one of the prominent stories in crop evolution books," says Spooner. "Because of Mercedes's work, they're going to have to rewrite the textbooks."

David Spooner | EurekAlert!
Further information:
http://www.usda.gov

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>